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Summary

1. Despite substantial recent progress, ecologists continue to search for methods of measuring the structure of

ecological networks. Several studies have focused on nestedness, a pattern reflecting the tendency of network

nodes to share interaction partners. Here, we introduce a new statistical procedure to measure both this kind of

structure and the opposite one (i.e. species’ tendency against sharing interacting partners) that we call ‘node seg-

regation’. In addition, our procedure provides also a straightforwardmeasure ofmodularity, that is, the tendency

of a network to be compartmented into separated clusters of interacting nodes.

2. This new analytical measure of network structure assesses the average deviation between the observed number

of neighbours shared by any pair of nodes (species), and the expected number, that is computed using a probabi-

listic approach based on simple combinatorics. The measure can be applied to both bipartite networks (such as

plant–pollinators) and unimode networks (such as food webs). We tested our approach on several sets of hypo-

thetical and real-world networks.

3. We demonstrate that our approach makes it possible to identify different kinds of non-random network con-

figurations (nestedness, node segregation and modularity). In addition, we show that nestedness in ecological

networks is less common than previously thought, and that most ecological networks (including the majority of

mutualistic ones) tend towards patterns of segregated associations.

4. Our analyses show that the new measure of node overlap and segregation can efficiently identify different

structural patterns. The results of our analyses conducted on real networks highlight the need to carefully recon-

sider the assumption that ecological networks are stable due to their inherent nestedness.
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Introduction

Representing species interactions in the form of networks has

become a common approach to investigate the patterns of

coexistence and community structure (Proulx, Promislow &

Phillips 2005). Investigating ecological networks makes it pos-

sible to summarize complex patterns into simple statistics. This

task is particularly compelling in a context where the challenge

for ecologists is to progressively move from collecting large

amounts of data to analysing them (Hampton et al. 2013).

Some properties of ecological networks can be inferred by

focusing on individual nodes (or species). For example, one

may randomly select species from a food web and count their

number of prey and predators in order to obtain the network

degree distribution. In this way, one would not have any infor-

mation on the way nodes are connected one to another (i.e.

who eats whom), but would still obtain insight into the mecha-

nisms responsible for network structure (Newman 2003).

Other measures require taking into account larger fragments

of the network. Among these, clustering measures (such as the

local, global and average clustering coefficients) are of great

interest, because they focus on ‘triangles’ (i.e. two interacting

nodes sharing a neighbour) (Watts & Strogatz 1998), which

can represent many common real-world interactions. For

example, in a trophic web, triangles can indicate several differ-

ent situations (see Stouffer 2010), such as two predators shar-

ing a prey and also feeding on one another (e.g. intraguild

predation; Polis, Myers & Holt 1989) or a parasite using two

species that are predator and prey (Strona 2014).

Besides food webs, investigating patterns of node sharing

have gained attention in the study of mutualistic networks

(Bascompte et al. 2003; Johnson, Dominguez-Garcia &

Munoz 2013). Researchers have hypothesized that competition

between two species (A and B) could be reduced if the number

of shared mutualistic partners is maximized (Bastolla et al.

2009; Johnson, Dominguez-Garcia &Munoz 2013). Typically,

an incremental increase in the population of either species A or

B would have a negative effect on the other species. However,

if the two species share a mutualistic partner (species C), then

growth of A could have a positive effect on C, that, in turn,

could positively affect B thereby offsetting some of the direct*Correspondence author. E-mail: giovanni.strona@jrc.ec.europa.eu
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negative effect of A on B. Extended to the whole network, this

scenario implies that each node pair could benefit (i.e. have a

reduced chance of extinction) from sharing as many neigh-

bouring nodes as possible. This gives the network a nested

structure; that is, the set of neighbours connected to any node

is a subset of the set of neighbours connected to any node with

higher degree (Atmar & Patterson 1993; Kondoh, Kato & Sa-

kato 2010; Johnson,Dominguez-Garcia&Munoz 2013; Stani-

czenko,Kopp&Allesina 2013).

Several authors have suggested that a nested structure can

promote network stability and persistence (Bastolla et al.

2009; Th�ebault & Fontaine 2010). The coexistence of numer-

ous interacting species might be obtained if the species are all

part of a highly stable and primarily mutualistic network

(Montoya, Pimm&Sol�e 2006). Although these hypotheses are

mostly speculative, they have been used as the basis for a grow-

ing corpus of literature that is currently trying to explain why

ecological networks are nested (Rohr, Saavedra & Bascompte

2014). Apart from nestedness, there are other network struc-

tures that could contribute to network stability. For example,

the presence of trophically based subwebs in a food web might

confer greater stability by isolating perturbations from the rest

of the web (Kondoh, Kato& Sakato 2010).

However, several authors (see, for example, Joppa et al.

2010; Johnson, Dominguez-Garcia & Munoz 2013) have

shown that the commonness of nestedness in ecological net-

works could be in part due by methodological issues, which

casts some shadows on the robustness of the observed patterns.

Here, we provide a new powerful statistical procedure (applica-

ble to both unimode and bipartite networks) that could help

clarifying this issue, and we use it to re-examine the structure

of a large set of ecological networks. Following previous stud-

ies (Almeida-Neto, Guimar~aes & Lewinsohn 2007; Fortuna

et al. 2010), we suggest that nestedness represents only one

potential outcome, since situations where nodes tend to share

few neighbours (herein referred to as segregation), or where

high node overlap can be identified within particular groups of

nodes (modularity), also constitute meaningful ecological pat-

terns (Podani & Schmera 2012; Podani, Jord�an & Schmera

2014).

Materials andmethods

It has been suggested that the average number of shared nodes is a nat-

ural measure of nestedness (Bascompte et al. 2003; Johnson, Domin-

guez-Garcia & Munoz 2013). This is consistent with the original

concept of nestedness (Patterson &Atmar 1986; Johnson, Dominguez-

Garcia & Munoz 2013; Staniczenko, Kopp & Allesina 2013) and with

the formulation of one of themost popular nestednessmeasures, that is

NODF (Almeida-Neto et al. 2008); in a perfectly nested pattern, each

pair of nodes always shares a number of neighbours equal to the degree

of the less connected node (Fig. 1a). In other words, the species with

lower degree is not linked to any species that the species with higher

degree is not also linked to. In any network, there is a finite number of

ways that nodes can be connected for a given number of links (connec-

tance) among the nodes. As such, combinatorics can be used to calcu-

late the expected amount of node sharing.

In the context of species co-occurrence, Veech (2013) has shown

how the expected number of shared localities between two species

can be computed analytically using simple combinatorics. The proba-

bilities given in Veech (2013) can also be obtained through the hyper-

geometric distribution as described recently in Griffith, Veech &

Marsh (2015). Here, we extend the probabilistic species co-occurrence

model of Veech (2013) to network node sharing wherein a neighbour

node is equivalent to a ‘site’, and the task is to determine whether the

two focal nodes (or species) ‘co-occur’ at or share a number of neigh-

bours that is different from the random (probabilistic) expectation.

This allows detection of cases where the number of neighbours

shared by two nodes is significantly greater or less than expected (Ve-

ech 2013 and Appendix S1). Therefore, for individual species pairs,

the probabilistic approach can distinguish significant node overlap

from significant node segregation (Fig. 1b,c). Moreover, this is

accomplished without having to create a randomized network for

comparison. In most other approaches (see below) to measuring net-

work structure, it is necessary to construct randomized networks

against which to compare the observed network. Furthermore, in

these other methods, the amount of node sharing (whether greater or

less than expected) is only assessed at the level of the entire network,

not individual species pairs. The probabilistic approach that we pro-

pose determines whether the observed amount of node overlap (shar-

ing) between a pair of nodes could be due to chance alone (Veech

2014). The probabilistic model of species co-occurrence (Veech 2013;

Griffith, Veech & Marsh 2015) has a historical predecessor in the

Raup–Crick metric of similarity (Raup & Crick 1979) in that both

approaches use combinatorics to analytically derive exact probabili-

ties. The main difference is that the Raup–Crick metric is applied to

test for non-random sharing of species among two assemblages (sam-

pling localities), whereas the former tests for non-random sharing of

sites by a pair of species. Further, at the time, Raup & Crick (1979)

did not recognize the link to the hypergeometric distribution,

although their metric has since been linked to that sampling distribu-

tion (Chase et al. 2011).

NODE OVERLAP AND SEGREGATION MEASURE ( Ɲ )

Given an undirected network having n nodes, for each pair of nodesVi

andVj having degree (i.e. number of neighbours), respectively, equal to

di and dj, relative node overlap can be quantified as:

xij ¼
Sij � Pij

� �
minðdi; djÞ eqn 1

(a) (b)

(d)(c)

Fig. 1. Different network structural patterns. (a) nestedness; (b, c) seg-

regation; (d) modularity. Numbers represent network nodes, while

filled cells and arrows represent network edges.
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where Sij is the actual number of neighbour nodes shared byVi andVj,

and Pij is the expected number of shared nodes given by the probabilis-

tic approach, which is computed as:

Pij ¼
Xminðdi ;djÞ

k¼1

n
k

� �
� n� k

dj � k

� �
� n� dj

di � k

� �

n
dj

� �
� n

di

� � � k eqn 2

We note that Equation 2 derives fromVeech (2013) which provides a

detailed mathematical (probabilistic) description for species co-occur-

rence among sites, but not node sharing. BecauseSij andPijmust be less

than or equal to min(di, dj), xij ranges from �1 to 1, but it is not sym-

metrical around zero in the sense that a given positive and negative

magnitude (e.g. xij = 0�5 and xij = �0�5) do not represent an equiva-

lent amount of node sharing and node segregation, respectively. In

order to get symmetry and retain scaling from �1 to 1, each xij is

divided by a factor,Ωij, that is themaximum possible value that a given

pair of nodes could have.

For any Vi and Vj sharing more nodes than expected by chance (i.e.

havingSij > Pij),Ωij is computed as:

Xij ¼ minðdi; djÞ � Pij

minðdi; djÞ eqn 3

For any Vi and Vj sharing fewer nodes than expected by chance (i.e.

havingSij < Pij), then if:

di þ dj � n
� �

\0 ! Xij ¼ Pij

min di; dj
� � eqn 4

or else:

di þ dj � n
� �� 0 ! Xij ¼ Pij � ðdi þ dj � nÞ

min di; dj
� � eqn 5

If the number of observed shared nodes is equal to expected

(Sij = Pij), thenxij = 0 (eqn. 1) andΩij is set equal to 1. Thus, a symmet-

ric measure of node overlap forVi andVj is obtained by dividing xij by

Ωij:

Ɲij ¼
xij

Xij
eqn 6

Some examples of computation ofƝij values are provided in Appen-

dix S2. Ɲij can be computed for each pair of nodes in a network and

then averaged to obtain an overallmeasure of node overlap Ɲ. Because
Ɲij is constrained to be between �1 and 1, Ɲ also varies between �1

and 1. Ɲ values near �1 represent a network with less than expected

node overlap, whereas Ɲ values near 1 represent greater than expected

node overlap. The expected value of Ɲ is zero under a condition of no

overall structure of node overlap in the network. A Ɲ value around

zero can also occur when positive and negative Ɲij values cancel one

another (which sometimes indicates a situation of network modularity,

see next section) or when allƝij are near zero.

COMPUTING Ɲ FOR DIRECTED NETWORKS

In a directed network, we can identify two categories of nodes, that is

those having at least one incoming link (heads), and those having at

least one outgoing link (tails). Thus, we can compute a separate Ɲij

value for each set, by evaluating, respectively, the overlap in head nodes

for any pair of tail nodes, and the overlap in tail nodes for any pair of

head nodes. Obviously, this requires the n parameter in equations 2, 4

and 5 to be properly adjusted as, respectively, the size of the head set

and the size of the tail set. For example, in a food web, Ɲij values are

computed first focusing on the overlap in food items for each pair of

consumers (setting n equal to the total number of food items), and then

by focusing on the overlap in consumers for each pair of food items

(setting n equal to the total number of consumers). Then, Ɲij values

belonging to the two sets can be averaged together to compute Ɲ, or
separately, providing two distinct measures of node overlap and segre-

gation ( Ɲin and Ɲout). Differences between Ɲin and Ɲout values (and

in the respective distributions of Ɲij values) can provide interesting

insights into the structure of directed networks, making it possible to

detect asymmetric patterns of interactions.

According to the above criterion, node overlap is evaluated within

heads and tails but not between them, ensuring, for example, that when

evaluating the overlap in the consumers of a pair of plants, we do not

include other plants in the computation of Ɲij. This derives directly

from network structure, however, specific rules can be applied on a per-

case basis to improve ecological realism of Ɲ, by identifying a particu-
lar set of nodes to be used in the computation of eachƝij value (adjust-

ing n as the size of that set). In a trophic web, one may take into

account trophic levels to discriminate between permitted and forbidden

links, setting n for any Ɲij as the actual number of nodes that can be

shared by Vi and Vj according to their trophic ecology. Similarly, one

could decide to exclude cannibalistic interactions by excluding Vi and

Vj from the computation ofƝij, and thus replacing the parameter nwith

(n � 2) .

These kinds of adjustments are, in general, not needed for directed

bipartite networks because the set of tails is disjoint from the set of

heads, that is links are allowed between but not within two different,

well-distinguished node categories (e.g. plants and pollinators). How-

ever, adjustments can bemade to the sets of nodes involved in the com-

putation of each Ɲij value, by identifying all nodes that Vi and Vj can

share according to a specific hypothesis. Since all of these possibilities,

however, go well beyond the demonstrative scope of our analyses, we

will demonstrate here the use of Ɲ in its basic formulation. Thus, for

all the analyses on simulated and real bipartite networks, we will com-

pute Ɲ as the average of allƝij values (calculated separately for tail and

head nodes). For the analyses on food webs, we will compute Ɲ as the

average of all Ɲij values (again, computed separately for tail and head

nodes, that is food items and consumers), with the only exclusion of

cannibalistic interactions (see previous paragraph).

SIGNIF ICANCE TESTING

Assessing significance of Ɲ is complicated by the fact that the distribu-

tion of Ɲij values is truncated, often non-normal, and the values them-

selves are not completely independent of one another. However, we

propose a test that is able to overcome these difficulties. First, the trun-

cation and non-normality of the Ɲij distribution can be overcome by

invoking the central limit theorem (CLT), which has been recently dem-

onstrated to be effective also for truncated distributions (Cha & Cho

2014). According to the CLT, the distribution of Ɲ as a random expec-

tation (i.e. a set of Ɲ values from randomnetworks) should be approxi-

mately normal and centred on zero regardless of the underlying form

of eachƝij distribution. Therefore, the significance of Ɲ can be assessed

with the test statistic, z = ( Ɲ � l)/SE.However, because theƝij values

are not independent, the standard error (SE) is underestimated and the

true or effective sample size (n) cannot be known. Instead of using the

typical SE = r/√n, where n = the number of node pairs (or Ɲij values),

we conservatively use n = 1. Therefore, our test statistic becomes

ZƝ = ( Ɲ � l)/r with l = 0 and r = the standard deviation of the
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observed Ɲ, with the P-value derived from the standard normal distri-

bution as usual. An observed network (or matrix) has non-random

structure if ZƝ is significantly different from zero.

Our test for significance of Ɲ is similar to the test typically used in

nestedness analyses involving data randomization (e.g. Ulrich, Alme-

ida-Neto &Gotelli 2009; Strona& Fattorini 2014). In those analyses, a

Z-value is calculated as Z = [Nobs � mean(Nsim)]/r(Nsim) where Nobs

is the observed value of a nestedness metric and Nsim represent values

from randomized or null species presence–absence matrices (or net-

works). In our approach to testing network structure, we do not have

randomized networks but rather our test invokes the CLT. A key fea-

ture of our analytical approach is the desire to avoid data randomiza-

tion, given that randomization is often sensitive to the particular

algorithm (i.e. null model) employed (Gotelli 2000; Ulrich & Gotelli

2007; Strona&Fattorini 2014).

MODULARITY

Asmentioned above, Ɲ values close to 0 could arise from different sce-

narios. A case of great interest is that of modularity; that is, a situation

where a group(s) of nodes can be identified in a network where node

overlap is substantially higher than expected between nodes belonging

to the same group, and lower than expected between nodes belonging

to different groups (Fig. 1d). Investigating the distribution ofƝij values

provides an immediate visual way to distinguish between random and

modular networks having Ɲ� 0, as the first would have an unimodal

distribution of Ɲij values with a peak centred at around 0, whereas the

latter would have a bimodal distribution of Ɲij values, with a peak at

near�1, arising from node segregation between different modules, and

another peak near 1 arising fromnode overlapwithinmodules.

The most straightforward way to quantify the bimodal pattern is

evaluating the statistical dispersion of Ɲij values around the mean.

Thus, we suggest the standard deviation of the Ɲij values as a simple

measure of modularity (Mod). Although modularity measured in this

way provides only a qualitative descriptor (i.e. it is not paired to a sig-

nificance test), it has the convenient property of being mathematically

related to the z-test for the significance of Ɲ. That is, a large standard
deviation might prevent an observed Ɲ value from being significant;

nonetheless, the network might have structure in the form of modules

even though the mean amount of node sharing throughout the entire

network is not significant.

TEST ON SIMULATED NETWORKS

We tested the ability of our approach to correctly identify non-random

patterns of network nestedness, segregation and modularity on a set of

simulated networks with different amounts and types of structure. To

allow comparisons with previous nestedness measures, we created all

networks (1000 per type of structure) as bipartite.

To obtain different amounts of order in the simulated networks, we

followed Strona & Fattorini (2014). For this, first we generated per-

fectly nested/segregated/modular networks of various sizes, and then

we rewired edges at random, quantifying order based on the percentage

of edges rewired. To create nested networks, we constrained the set of

neighbours connected to any node to be a subsample of any other set of

neighbours connected to a node having the same or a higher degree. To

create segregated networks, we constrained each node to share no

neighbouring node with any other node in the network (this also forced

the in- and out-degree of each node to be equal to 1). For both the

nested and the segregated networks, we randomly varied the number of

nodes between 20 and 100. To create a different amount of order, for

each network, we reiterated r 9 E times the procedure of extracting

two nodes at random and changing their status from connected to dis-

connected or vice versa. The parameter E indicates the total number of

possible edges between all nodes in the network (which, in a bipartite

network, corresponds to the size of the corresponding binary matrix).

We let r vary randomly between 0 (maximum order) and 1 (maximum

disorder), as we empirically observed that a number of randomization

steps equal to E were enough to approximate the maximum perturba-

tion status of the network (Strona et al. 2014).

For each of these nested/segregated random networks, we com-

puted Ɲ and, additionally, we quantified nestedness using bothNODF

(Almeida-Neto et al. 2008) and the spectral radius of the network adja-

cency matrix, q (Staniczenko, Kopp & Allesina 2013). To evaluate sig-

nificance of NODF and q, we created two independent sets of null

networks using different randomization rules. For q, we used the null

model recommended by Staniczenko, Kopp & Allesina (2013), which

creates randomly connected networks having the same number of tails,

heads and edges of the original one. For NODF, we used the propor-

tional null model proposed by Bascompte et al. (2003), which starts

from the set of nodes of the original network and then connects two

nodes with a probability proportional to their in- and out-degree. In all

cases, we quantified nestedness using both P and Z values (see Strona

& Fattorini 2014). Finally, we performed a set of pairwise comparisons

between the amount of network structure, network quantitative prop-

erties, Ɲ values and the different raw and standardized nestednessmea-

sures. To make clear the distinction between node overlap and

segregation, instead of quantifying order using the parameter r (that

ranges between 0, maximum order, and 1, maximum disorder), we

transformed it to 1�r for nested networks and to r�1 for segregated

networks. In this way, we obtained a symmetric measure of order rang-

ing from �1 (complete segregation) to 1 (perfect nestedness), with 0

indicating randomness.

We also used simulated networks to conduct a power analysis of our

test based on ZƝ. For a specified effect size, we calculated type I error

probability as the number of Ɲ values that were less than the effect size

but still statistically significant (a = 0�05) expressed as a proportion of

all Ɲ values less than the effect size. Type II error probability was cal-

culated as the number of Ɲ values that were greater than the effect size

but not statistically significant and expressed as a proportion of all Ɲ
values greater than the effect size. Power was calculated as 1 � P (Type

II error).

To evaluate our measure of modularity, we created (bipartite) net-

works with different degrees of modularity by selecting a priori a ran-

domnumber of nodes (varying from 100 to 200) and a randomnumber

of modules (varying between 2 and 10). Then, we randomly assigned

each node to a module. Finally, for each possible node pair within a

module, with a probability P, we created an edge between the node

pair, and with probability 1�p, we created an edge between two nodes

picked at random from the whole node set. We let p vary between 0

(complete randomness) and 1 (maximum modularity). Finally, we

assessed modularity in each network as Mod ¼ r (Ɲij), and we com-

pared eachMod valuewith the correspondingP.

TEST ON REAL NETWORKS

We measuredƝ in a large set of real ecological networks featuring dif-

ferent kinds of interactions, and particularly on: (i) all the mutualistic

networks available from Web of Life data set (www.web-of-life.es),

including 59 plant/pollinator networks and 30 plant/seed disperser

networks; (ii) two different sets of host/parasite networks, the first

including the 50 largest networks compiled by grouping per country all
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the fish parasite records included in theNaturalHistoryMuseum (Lon-

don,UK) host/parasite data base (http://www.nhm.ac.uk), and the sec-

ond including 26 mammal/flea networks provided by Krasnov et al.

(2012) (available at http://datadryad.org/handle/10255/dryad.36193);

(iii) all the community food webs (n = 179) available from the ECO-

WeBdata base (Cohen 2010), as an example of application of Ɲ to uni-

mode networks. It should be pointed out that many of the foodwebs in

the last data set include ecological functional groups in place of, or

together with taxonomic units. Consequently, any interpretation of

results requires caveats, since the causes of node overlap and segrega-

tion are intimately related to node types, and should therefore be evalu-

ated on a per-case basis.

Results

COMPARISON WITH SIMULATED NETWORKS

Our new measure, Ɲ, performed well in quantifying the

amount of order or structure in the simulated networks. As the

amount of order increased from �0�5 to �1, Ɲ rapidly

approached �1 indicating increasing node segregation, while

when order increased from 0�5 to 1, Ɲ rapidly approached 1

indicating increasing node overlap (Fig. 2a). As intended, Ɲ
gradually declined to near zero for networks, in which an

increasing number of connections among nodes was random.

With 50% or more of the node links being random (order

between �0�5 and 0�5), Ɲ was almost always between �0�1
and 0�1 (Fig. 2a) indicating that networks with a majority of

random links have Ɲ values near zero. ZƝ and P-values of Ɲ
effectively distinguished between highly ordered and random

networks (Fig. 2b,c). The proposed modularity measure (i.e.

the standard deviation of Ɲij values) was positively correlated

with modularity degree (Spearman’s rho = 0�77, P < 0�0001)

and made it possible to discriminate between modular and

non-modular networks (Fig. 3).

The Z-test had relatively good power (>0�7) when effect size

was Ɲ > 0�7 and Ɲ < �0�8 for nested and segregated net-

works respectively (Fig. 4). Our Z-test is inherently conserva-

tive in that we base the SE on an effective sample size of n = 1.

However, the power can be increased by using any number

between 1 and 3 (as a power adjustment factor) in the calcula-

tion of SE and subsequently ZƝ. Using a power adjustment

factor of n = 3, the test had good power even for effect sizes as

low as Ɲ > 0�5 and Ɲ < �0�5 (Fig. 4). In any test of signifi-

cance, there is generally a trade-off between power and type I

error. As power increases, type I error also increases. This

trade-offwas found for our Z-test, although type I error proba-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Relationship between the amount of

structure (varying from�1, complete segrega-

tion, to 1 perfect nestedness) in a set of 2000

random networks and raw values, Z and P

values of Ɲ (a–c), q (d–f) andNODF (g–i).

Fig. 3. Relationships between the modularity measure based on stan-

dard deviation of Ɲij values, and the amount of modularity (varying

from 0, no modularity, to 1 complete modularity) in 1000 simulated

networks.
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bilities generally remained at a reasonably low level typically

not exceeding the specified significance level (Fig. 4). We also

examined power adjustment = 5 (not shown in Fig. 4) and

found that type I error probabilities became intolerably high.

COMPARISON BETWEEN Ɲ AND OTHER NESTEDNESS

MEASURES

The spectral radii (q) computed for the set of simulated net-

works were poorly correlated with the corresponding amount

of order (Fig. 2d). Conversely, comparison of NODF values

with order of the simulated networks produced results similar

to those obtained using Ɲ, that is NODF was able to detect

quite well variation in network structure, both for nested (as in

Strona & Fattorini 2014) and for segregated networks

(Fig. 2g). However, the correlation between order and Ɲ
was more tight than that between order and NODF, that

is a given amount of structure was typically indexed by a

smaller range in Ɲ values than in NODF values (cf.

Fig. 2a,g).

Z- and P-values of q performed better than the spectral

radius in assessing network structure (Fig. 2e,f). Conversely,

Z- andP-values ofNODFwere less correlatedwith the amount

of structure than the raw NODF value (Fig. 2h,i). In general,

Z- andP-values of Ɲ (Fig. 2b,c) weremore efficient than those

of q (Fig. 2e,f) and NODF (Fig. 2h,i) in measuring segrega-

tion.

INDEPENDENCE OF Ɲ FROM NETWORK PROPERTIES

The simulated networks were much variable in their structure

and symmetry, with number of edges ranging between 10 and

1375 (mean = 246�6 � 283�4), connectance ranging between

0�02 and 0�75 (mean = 0�28 � 0�24) and symmetry (ratio

between tails and heads) varying between 0�2 and 4�9
(mean = 0�95 � 0�70). Neither Ɲ nor the other investigated

nestedness measures (i.e. NODF and the spectral radius, q)
were completely independent from network properties

(Table 1). The number of network nodes was strongly corre-

lated only with spectral radius q, but Ɲ, NODF and qwere all
correlated with the number of edges and network connectance,

that is the fraction of existing edges over the possible total

number. However, both edge number and connectance were

strongly correlated with the amount of simulated order (with rs
respectively equal to 0�751 and 0�752). Therefore, to ‘factor

out’ this intermediary effect of order, we obtained the residuals

from regressions of number of edges vs. order and connectance

vs. order. When using the residuals, none of the measures were

correlated with edge number and connectance (Table 1), with

the exception of q, which was still moderately correlated with

the number of edges (rs = 0�28).

COMPARISON WITH REAL NETWORKS

We found that situations of overall node segregation and

strong differences in overlap between node categories (e.g.

plants vs. pollinators, host vs. parasites, etc.) are common in

both mutualistic and antagonistic networks. In most of the

investigated networks (72%), node pairs tended to share

fewer neighbours than expected by chance, leading to negative
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Fig. 4. Power and type I error probability for the ZƝ test. The assess-

ment is based on 10 000 simulated networks havingƝ ranging between

�1 and 1 (effect size). Lines represent different power adjustment set-

tings (see text for details).

Table 1. Relationships (expressed as Spearman’s rank correlation coefficients) between Ɲ, q, NODF and their respective Z values, and network

properties measured in a set of 1000 nested and 1000 segregated simulated networks. Correlations for the residuals are indicated by ‘e’

Edges Nodes Connectance e (Edges vs. Order) e (Connectance vs. Order) Order

Ɲ 0�74 0�00 0�73 �0�12 �0�02 0�98
ZƝ 0�74 �0�01 0�75 �0�08 0�01 0�98
q 0�82 0�63 0�33 0�28 �0�08 0�67
Z (q) 0�73 0�09 0�67 0�11 0�08 0�85
NODF 0�74 �0�03 0�78 �0�10 0�03 0�98
Z (NODF) 0�68 0�00 0�69 0�02 0�03 0�87
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Ɲ values (Fig. 5). However, among all the investigated ecologi-

cal networks (353), only 44 showed significant structure

(P < 0�05, with ZƝ computed using an adjustment factor

n = 3), 33 of which had Ɲ \� 0�7. These findings contrast

with the fact that, consistent with previous studies (Bascompte

et al. 2003; Staniczenko, Kopp &Allesina 2013), most of these

networks are significantly nested when examined with other

procedures such as the spectral radius approach and NODF

(see Table S1).

As mentioned, Ɲ values near zero could indicate modular-

ity, that is situations where many highly positive and negative

Ɲij values cancel one another in the averaging procedure.

We found that most networks (including those not showing

strong patterns as revealed by Ɲ) were highly modular (aver-

ageMod = 0�78 � 0�18), thus indicating that overall random-

ness is indeed rare in ecological networks.

Discussion

By using a new approach to measuring network structure,

our results indicate that nestedness is probably not as wide-

spread as currently thought. Among the network typologies

we investigated, patterns of substantial node overlap were

moderately common only in seed–disperser networks (Fig. 5).
This is consistent with the fact that most granivores and frugi-

vores (particularly mammals and birds) tend to be dietary

generalists. (Wheelwright 1985). In the other kinds of net-

works, including the plant–pollinator ones, we found an over-

all tendency towards node segregation (i.e. against sharing

interacting partners), which supports the idea that specializa-

tion may be the key to species coexistence (Pauw 2013).

Investigating how the taxonomic, biogeographical and eco-

logical relatedness between species pairs affects their respective

Ɲij values could provide fundamental insights into these issues,

possibly leading to a better understanding of the determinants

of ecological network structure. Although this kind of detailed

analysis was far beyond the scope of this paper, we hope that

this approachwill be pursued by future researchers.

Our findings are consistent with the possibility that nested

networks are no more likely to be stable than are unstructured

ones, and that the strength of interactions may play a funda-

mental role in system stability (Allesina & Tang 2014). Thus,

the controversial notion that nestedness promotes the stability

of ecological networks (Bastolla et al. 2009; Th�ebault & Fon-

taine 2010; James, Pitchford & Plank 2012; Rohr, Saavedra &

Bascompte 2014) should not be taken without questioning.

Although our study is not the first casting doubt on the ubiq-

uity of nestedness (see Joppa et al. 2010; Johnson, Domin-

guez-Garcia &Munoz 2013), it is the first providing analytical

evidence that most species tend to share fewer partners than

expected by chance.

By offering a synthetic measure capable of simultaneously

quantifying node overlap and segregation, Ɲ provides

various advances to the field of ecological network analysis.

Fig. 5. Distribution of Ɲ values computed on the different categories of ecological networks, and particularly plant–pollinator, seed–disperser and
host–parasite networks and foodwebs.
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A fundamental aspect of our method is that the deviation

(positive or negative) between the observed and the expected

overlap for any pair of nodes in a network is computed by

using a probabilistic approach based on combinatorics (as in

Veech 2013). This makes it possible to obtain analytically the

expected number of shared partners between two nodes while

controlling their respective number of edges and the total num-

ber of nodes in the network. In this sense, our approach is sub-

stantially different from other nestedness measures that assess

the deviation between expected and observed patterns of node

overlap a posteriori (using null model analysis) and only at the

level of the whole network (Ulrich&Gotelli 2007).

We have proposed Ɲ as a unique measure to assess the

overall tendency of a network towards nestedness or segrega-

tion. Although we have shown with our simulations that this

measure is a faithful representation of the amount of structure

of a network, it should be emphasized that the core informa-

tion provided by our analytical approach lays in the distribu-

tion of Ɲij values that can offer a detailed picture of how

the tendency towards nestedness and/or segregation is distrib-

uted across the network. Researchers can rely on Ɲ or on the

distribution of Ɲij values (or both) for their analysis depending

on their particular purposes. Moreover, substantial informa-

tion can be obtained by comparing the distributions of

expected and observed node overlap values; we hope this will

be investigated in more detail in future studies of real-world

networks.

Similarly to NODF and spectral radius, our measure was

not completely independent from connectance, with weakly

connected networks tending towards low Ɲ values, due to the

fact that networks of this kind are constrained towards a segre-

gated edge configuration. The effect of connectance on nested-

ness measures is often considered undesirable. A possible

solution to this issue is using null model analysis, that is com-

paring the observed nestedness with that simulated in a set of

null networks having the same (or comparable) connectance of

the target network (Ulrich&Gotelli 2007; Almeida-Neto et al.

2008; Staniczenko, Kopp&Allesina 2013).

Our approach, in principle, does not prevent the use of

data randomization that is common to most null models; it is

permissible to compare Ɲ of a given network to that of any

other network built according to any criteria. Nevertheless, we

have provided an alternative test of significance that has suffi-

cient power, and that is free from the potential issues related to

traditional null model approaches and data randomization

(Gotelli 2000; Ulrich &Gotelli 2007; Strona & Fattorini 2014).

However, we are confident that users might find even better

ways to use Ɲij values (as well as the distributions of observed

and expected node overlap values) to analyse ecological net-

works. Our hope is that the probabilistic approach will lead to

a more thorough and comprehensive analysis and thereby a

more in-depth understanding of ecological network structure.
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