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Abstract
Several studies have identified the tendency for species to share interacting partners 
as a key property to the functioning and stability of ecological networks. However, 
assessing this pattern has proved challenging in several regards, such as finding proper 
metrics to assess node overlap (sharing), and using robust null modeling to disentangle 
significance from randomness. Here, we bring attention to an additional, largely ne-
glected challenge in assessing species’ tendency to share interacting partners. In par-
ticular, we discuss and illustrate with two different case studies how identifying the 
set of “permitted” interactions for a given species (i.e. interactions that are not im-
peded, e.g. by lack of functional trait compatibility) is paramount to understand the 
ecological and co-evolutionary processes at the basis of node overlap and segregation 
patterns.

K E Y W O R D S

artificial life, co-occurrence, ecological networks, food web, functional traits, mutualism, 
nestedness, pollinators

1  | INTRODUCTION

Mapping the links connecting resources to consumers in complex 
networks of species interactions has become a fundamental ap-
proach in community ecology. Several studies have suggested that 
the structure of such networks provides a key to improve our un-
derstanding of how complexity emerges and is maintained in natural 
systems. Among the different network properties, much interest has 
been dedicated to the tendency of species toward sharing interacting 
partners either more or less than expected at random. In particu-
lar, the tendency for sharing more partners than expected, a pattern 
known as “nestedness” (Ulrich, Almeida-Neto, & Gotelli, 2009), has 
been suggested as ubiquitous in ecological mutualistic networks 
(Bascompte, Jordano, Melián, & Olesen, 2003), and possibly ben-
eficial to their persistence (Bastolla et al., 2009; Rohr, Saavedra, 
& Bascompte, 2014; but see also James, Pitchford, & Plank, 2012; 
Allesina & Tang, 2012).

However, assessing how much the tendency to share partners 
departs from randomness has proved challenging, both for the iden-
tification of a proper metric, and of a robust null model capable of 
disentangling significance from randomness. In an attempt to contrib-
ute to the discussion, Strona and Veech (2015) have developed a new 
measure ̄capable of identifying patterns varying from node overlap 
to the opposite tendency (i.e. node segregation). Among available 
metrics, ̄  has some particular characteristics that make it extremely 
flexible, and capable of being applied to any kind of network –not only 
bipartite networks such as plant pollinators, but also unimode net-
works such as food webs, despite recent unfounded criticism stating 
the contrary (Chen, 2016; Appendix S1).

The procedure by Strona and Veech (2015) consists in deriving by 
averaging a standardized measure of pairwise node overlap (Ɲij) ob-
tained, for each pair of nodes (i.e. species) i and j by comparing the ob-
served number of shared partners, to that expected according to basic 
probability and combinatorics. The expected number of shared nodes 
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takes into account both the respective numbers of interacting partners 
for each of the focal nodes, and the total number of partners that the 
two nodes can possibly (realistically) share. This latter value (corre-
sponding to the parameter n in Strona & Veech, 2015, eqn. 2) must be 
specified within the limits of ecologically plausible interactions.

In absence of any particular assumption about plausible interac-
tions, one may specify the sets of potentially shareable partners for 
each node (and hence n for each pair of nodes), based solely on the 
number of available species in the network. In the bipartite case, for 
example, a plant-pollinator network, a naïve specification of n is fairly 
straightforward. Thus, when computing the pairwise node overlap (Ɲij) 
for two pollinator species, n could be set equal to the total number 
of plant species in the network. Indeed, this would be the correct ap-
proach if the researcher had no a priori information about the func-
tional and structural compatibility of each pollinator species with each 
plant species. However, sometimes relevant and useful ecological 
information is available. The Ɲij measure of Strona and Veech (2015) 
allows for the application of explicit rules aimed at identifying specific 
sets of shareable nodes by including or excluding potential interacting 
partners on the basis of general or specific criteria. Further, applying 
explicit rules for identifying potential interacting partners may often 
be a critical element in testing specific hypotheses.

For instance, when computing ̄  in a food web, one can either or 
not account for cannibalistic behaviors, which correspond to loops in 
a network (i.e. nodes linked to themselves). In the latter case, in each 
pair comparison, one should exclude the two focal nodes in the com-
putation of Ɲij, hence assuming that a resource will never consume 
itself, by replacing the parameter n with (n−2). In addition, or in alter-
native, one may identify smaller sets of partners possibly shared by the 
two focal nodes, and hence smaller values of n on the basis of partic-
ular ecological criteria. For example, using functional traits, one may 
limit the set of possible partners for two pollinator species to the plant 
species whose pollen is physically (i.e. mechanically) accessible to both 
pollinators. We note that respecifying n (from all nodes in the network 
to a smaller restricted set) does not alter the basic assumption that 

each node in the specified set of potential partners has an equal prob-
ability of being linked to the focal pair. The equal probability assump-
tion is a feature of the hypergeometric sampling distribution, which is 
the foundation of our approach (Strona & Veech, 2015).

This particular feature makes ̄  a very flexible tool to test a broad 
range of hypotheses. Furthermore, it poses a fundamental question 
about our current perception of node overlap (species sharing) in eco-
logical networks, and the way ecologists have evaluated it to date. 
Commonly used nestedness metrics, such as the very popular NODF 
(Almeida-Neto, Guimaraes, Guimarães, Loyola, & Ulrich, 2008), have 
been conceived for bipartite networks, that is, networks where nodes 
belong to two distinct categories, and where interactions do not occur 
between nodes belonging to the same category. Such metrics are 
based on the underlying assumption that a node (e.g. a species) can 
potentially interact with all the members of the other category (i.e. 
the assumption that a flowering plant species can be pollinated by 
all pollinating species in the network, or that a parasite can infect all 
available hosts).

Here, we demonstrate that this assumption could complicate the 
interpretation of observed patterns, because the range of possible in-
teractions could be subject to various constraints due, for example, to 
co-evolutionary processes. For instance, the co-adaptation between 
proboscis length of moths and nectar position in the flowers of differ-
ent orchid species (Micheneau, Johnson, & Fay, 2009) clearly limits the 
number of shared pollinators for each pair of orchid species and vice 
versa. In such a scenario, a situation of high node segregation could 
emerge either because species do not have the potential to interact 
with common partners, or due to ecological processes (such as compe-
tition) forcing them to use different resources (Figure 1). Assume that 
in a large network two different pollinators are observed visiting only 
one (the same) plant species. It would be clearly important to under-
stand if the target plant is actually the only species accessible to the 
two pollinators, or if the overlap in resource use should be attributed 
to other reasons potentially of greater ecological interest (possibly, 
some beneficial interaction between the two pollinators).

F IGURE  1 The set of possible pairwise 
interactions constrains the range of realized 
network configurations
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Due to the wide range of possible factors limiting/controlling the 
accessibility to a resource (e.g. synchronicity between plant flowering 
period and pollinator life cycle, visual and chemical communication), 
having enough information to identify the true set of possible inter-
acting partners could be extremely challenging, and further compli-
cated by the blurred boundaries between co-evolutionary constraints 
and ecological factors. On the one hand, taking into account only a 
few constraining factors would likely lead to overestimating the “true” 
number of potential partners. For example, we may end up considering 
as possible an interaction between a pollinator and a plant with mor-
phological compatibility, but asynchronous life cycles. On the other 
hand, however, this would still provide a more realistic assessment 
than just assuming all interactions as possible. Furthermore, perform-
ing different analyzes by keeping fixed one factor at a time could be 
an effective way to identify their relative effects on network structure 
and hence test various hypotheses.

To demonstrate how using a priori specified subsets of potentially 
shared partners can deeply affect the results and interpretation of an 
analysis of network structure, we performed two independent ana-
lyzes on both real and simulated networks, showing how the appli-
cation of different criteria may yield substantially different outcomes. 
Our results suggest that a more conscious attempt at taking into 
account permitted vs. forbidden interactions could be the key to a 
more complete understanding of patterns and processes in ecological 
networks.

2  | REAL NETWORKS

We examined the structure of 181 food webs compiled by Cohen 
(2010). The food webs include several kinds of systems. We classi-
fied them into two broad categories, namely 145 persistent and 36 
ephemeral food webs. The first included typical food webs, such as 
large, relatively open systems as lake or forest food webs, while the 
latter included small systems relying on resources only temporar-
ily available, such as communities living in fallen trees, or in animal 
corpses. The complete list of food webs and their categorization is 
provided in Table S1.

Intuitively, one should expect a higher degree of structure in per-
sistent food webs than in ephemeral ones, due to the longer temporal 

scale, and the likely higher diversity and abundance of ecological struc-
turing processes. We evaluated if this was true, and how much it was 
affected by considering or not forbidden links, by computing the mea-
sure of overlap either assuming that all species can consume other 
species, or by constraining consumer–resource interactions by adding 
a rule based on trophic levels. For this, we first identified trophic lev-
els in each network according to Williams and Martinez (2004) as the 
minimum path distance of target species to basal resource. Then we 
consider as permitted only links from a resource to a consumer at a 
higher trophic level. This is still far from being a perfect representa-
tion of possible interactions, yet it offers a more realistic picture than 
considering all links as permitted. Taking into account trophic levels 
led to a substantial reduction in the set of potential interacting part-
ners (n) for each node. On average, the ratios between the size of the 
complete set of a node’s partners (i.e. all nodes in the network) and 
the corresponding set reduced according to the selected trophic rules 
were 0.37 and 0.33, respectively, for persistent and ephemeral food 
webs (Figure 2a).

For both persistent and ephemeral food webs, taking into account 
trophic levels revealed different patterns from those observed when 
all interspecific interactions were assumed as possible (Figure 3). In 
the first case, persistent networks showed a moderate tendency for 
segregation (i.e. less overlap than expected in shared partners), with 
mean ̄  = −0.31 ± 0.05 (95% CI), while ephemeral networks resulted 
mostly random mean ̄  = −0.03 ± 0.14. But, when trophic levels were 
taken into account, both sets of networks exhibited a stronger pattern 
of node overlap that, as expected, were much stronger in persistent 
networks than in ephemeral ones (with mean ̄  = 0.34 ± 0.13 for 
ephemeral and ̄  = 0.58 ± 0.04 for persistent webs).

3  | SIMULATED NETWORKS

We applied our metric ( ̄ ) to digital ecological networks evolved in 
the artificial life simulation platform Avida (http://avida.devosoft.
org/). In Avida, “organisms” compete and replicate themselves in a 
virtual environment over time (Ofria & Wilke, 2004). The digital or-
ganisms interact with the environment by performing different logical 
operations (referred to as “tasks” in Avida) involving the manipulation 
of binary strings. The tasks differ in their degree of complexity and, 

F IGURE  2 Density plots showing the 
distribution of the ratios between the size 
of the set of potential interacting partners 
for a given node reduced according to 
specific criteria, and that of the complete 
set of interacting partners, for all nodes 
in the respective networks. The sets of 
potential interacting partners were reduced 
according to trophic rules in food webs (a; 
blue = persistent, orange = ephemeral), 
and according to a task-matching criterion 
in digital host parasite networks (b, see 
Simulated Networks)
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depending on the experimental setting, may provide different ben-
efits to the digital organisms and/or affect their vulnerability toward 
“parasites.” Parasites are other digital organisms capable of targeting 
“free-living” organisms (i.e. hosts) and stealing part or all of their re-
sources (Zaman et al., 2014). Avida simulates competition and, in the 
long run, evolutionary dynamics very consistent with those observed 
in natural systems (Fortuna, Zaman, Wagner, & Ofria, 2013; Lenski, 
Ofria, Pennock, & Adami, 2003).

Here, we used the 100 host/parasite networks generated in Avida 
by Strona and Lafferty (2016). Those networks, that included from 
1 to 65 hosts (mean 19.6 ± 11.8 SD), from 2 to 78 parasites (mean 
20.1 ± 18.4), and from 3 to 479 interactions (mean 88.8 ± 93.5), have 
evolved in a broad range of environmental conditions, constitute a per-
fect benchmark for our test for several reasons. First, different from 
natural ecological networks, they are fully resolved (i.e. we have com-
plete information on existing hosts, parasites, and their interactions). 
Second, they include all (and only) the species that have participated in 
the co-evolutionary phase. Third, they are built according to a specific, 
objective rule permitting parasites to infect a host: namely, a parasite 
can infect a host only if it can perform at least one of the logical op-
erations performed by the host (see Zaman et al., 2014). For example, 
one of the simplest logical operations performed by an Avidian digital 
organism is the “NOT” task, where an organism manipulates a 32 bit 
binary string replacing each 0 with a 1 and vice versa. As the complex-
ity of this task is low, it will be easily evolved by parasites, creating a 
strong selection against hosts performing “NOT,” hence promoting the 
diffusion of those hosts capable of performing more complex tasks, 
and giving rise to co-evolutionary dynamics.

The execution of tasks in Avida needs specific resources (i.e. 
performing the “NOT” task may require, depending on the setting, 
different resources than those needed to perform another task). As 
resources are available in limited quantities, species compete for them. 
Furthermore, performing a logical operation can lead to the produc-
tion of other resources. Thus, a host capable of performing a certain 
task requiring a specific resource, and another task requiring another 

resource, could be forced by stronger competitors using one of the 
two resources to not perform one of the two tasks. In turn, this would 
expose the host to only some of all the parasites that could potentially 
use it, while protecting it from parasites targeting the unperformed 
task.

The task-matching rule makes it possible to identify exactly the set 
of hosts that could potentially be infected by a given parasite, and the 
set of parasites that could potentially infect a given host. In turn, this 
allows us to discriminate precisely between the overlap/segregation 
due to co-evolutionary constrains (i.e. the set of abilities to perform 
logical operations acquired by organisms during the co-evolutionary/
arms race phase), and that due to ecological processes such as the 
resource competition described above.

We examined node overlap (species sharing) in all of the 100 net-
works from Strona and Lafferty (2016) first by assuming all species as 
possible partners of each other, and then by limiting the set of inter-
acting partners only to species having matching tasks. The ratio be-
tween the set of potential interacting partners obtained by taking into 
account task matching and the complete one (i.e. all hosts for a given 
parasite, and all parasites for a given host) was 0.73 averaged over 
all host and parasites (Figure 2b). Thus, n was not reduced as much 
for these simulated host–parasite networks as it was for the real food 
web networks.

We found that many networks appear random or even segregated 
when the overlap is evaluated among all partners (min ̄  = −0.76; max 
̄  = 1; mean ̄  = 0.11; CI 95% = ±0.08). However, when the overlap 

is evaluated under the condition of a constrained (and more realis-
tic) set of potential partners, then the networks show a strong ten-
dency toward overlap/nestedness (min ̄  = 0.10; max ̄  = 1; mean 
̄  = 0.71; CI 95% = ±0.04) (Figure 4a).

Without taking into account prior information (such as the spe-
cies actually capable of being shared by two focal species), we found 
no relationship between network structure and species diversity 
(Spearman’s rho = −0.08, p-value = .4088 when a constrained set of 
species is not used). In this scenario, most networks (from species poor 

F IGURE  3 Comparison between node overlap in persistent (P) vs. ephemeral (E) food webs computed either taking into account or not 
trophic levels (TL). Boxplots in the left panel summarize the ̄  values in the two categories of food webs and in the two different experiments 
(i.e. with/without trophic constraints). Those in the right panel summarize the difference between the ̄  values computed taking into account 
trophic levels, and those computed considering all interactions as possible in the two sets of food webs. Boxes indicate first and third quartiles, 
whiskers indicate range values, horizontal lines indicate median values, and dots indicate outliers
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to species rich networks) showed randomness in their structure, while 
only networks with low species diversity showed either overlap or 
segregation (Figure 4b). When taking into account species actually ca-
pable of sharing partners, however, the networks showed more struc-
ture, and a clearer, negative relationship between node overlap and 
species diversity (Spearman’s rho = −0.59, p–value < .0001) emerged 
(Figure 4c). This indicates that when diversity is low, parasites tend to 
use all the hosts that they can access, while in cases of high diversity 
they tend to differentiate (become selective in) their host usage. This 
pattern was only revealed by basing the analysis on a constrained set 
of potential partner species, that is, using a realistic value of n in the 
calculation of ̄ .

4  | DISCUSSION

Ecological networks include a very broad range of different scenarios. 
The formal distinction made by dividing them into bipartite or uni-
mode, or directed or undirected is a good starting point to discriminate, 
but it is also obvious that a more fine grained distinction can be made 
but only on a per case basis. In this study, we showed how our under-
standing of network structuring processes can be enhanced by tak-
ing into account an important, yet largely neglected aspect (at least in 
the field of network pattern analysis), namely the distinction between 
forbidden and permitted interactions between network members. 
The two case studies we presented demonstrate how this adjustment 
could be fundamental to a proper identification of structural patterns 
that run the risk of going unnoticed in the dense network of all pos-
sible interactions, and to disentangle the effects of co-evolution from 
ecological processes in network structural patterns. Those, however, 
are just a couple of examples of all the possible benefits deriving from 
making explicit the sets of potential partners two nodes can share.

The choice of two a priori, intuitive starting hypotheses (i.e. the 
higher structure of persistent systems than ephemeral ones, and 
the positive relationship between species overlap and community 

richness) were mostly dictated by our goal of showing the importance 
of constraining the set of interacting partner species. However, we see 
a common application of the same approach as particularly suitable 
to exploratory analyzes aimed at identifying the major determinants 
of network structure. In particular, one may identify different levels 
of structure nested within different degrees of constraint. For exam-
ple, this may lead to the discovery that species tend toward overlap 
in their use of interaction partners when we impose some ecological 
constraints, but not when we imposed others. This may reveal, for ex-
ample, that species appearing not to compete for resources when they 
are considered as capable of using all resources in an ecosystem are in-
deed in strong competition when there are environmental constraints 
on resource use and interactions.

Taking into account ecologically realistic interactions could be 
helpful for another important issue in the analysis of ecological net-
works. The common procedure of comparing the observed amount of 
nestedness with those of a set of null networks created by randomiz-
ing the original one according to different rules (Almeida-Neto et al., 
2008; Atmar & Patterson, 1993; Bascompte et al., 2003; Bastolla et al., 
2009) is made necessary by the dependence of nestedness measures 
on network properties. In particular, connectance (i.e. the percentage 
of realized interactions over the total possible ones) creates an upper 
boundary for most indices, including the popular NODF (Almeida-
Neto et al., 2008). Null model analysis circumvents this issue and 
permits identification of nestedness in weakly connected networks 
because evaluation is not based on absolute NODF values but on their 
comparison with those computed in randomly rearranged versions of 
the observed network (having the same connectance).

However, viewing connectance as a network property that should 
be controlled when measuring nestedness could limit our understand-
ing of the determinants of network structure. In particular, this may 
lead us to consider as equally structured (in terms of nestedness) two 
networks having very different connectance, thus ignoring the possi-
bility that the frequency of ecological interactions (i.e. connectance) 
may reflect the action of ecological processes just as does nestedness. 

F IGURE  4 Results of the experiments on digital host–parasite networks. (a) Node overlap computed using all species as potential interactors 
(blue) and overlap computed when interactions are constrained to a subset of interactors that have a common trait or task (orange). (b, c) 
the relationship between overlap/segregation and species diversity in the 100 host/parasite digital networks, with overlap measured either 
assuming (b) all interactions, or (c) the limited set
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If the fraction of realized interactions in a network is small (low con-
nectance), then perhaps the tendency of nodes to share mutualistic 
partners (i.e. the mechanism suggested to promote network stability 
by reducing the overall competitive load, see Bastolla et al., 2009; 
Jonhson, Domínguez-García, & Muñoz, 2013) is not so strong and/or 
widespread across the network.

As an example, one of the largest known pollinator networks con-
sists of more than 15,000 documented interactions between 1,429 
animal species visiting flowers of 456 plant species in a small area in 
southwestern Illinois, USA (Memmott, Craze, Waser, & Price, 2007). 
This network has a connectance of ~2%. Almost a third of pollinators 
present in the Illinois network pollinate only one plant species, and 
87% of pollinator species pollinate less than 5% of available plant spe-
cies. Similarly, 86% of plant species in the network can be pollinated 
by less than 5% of available pollinator species. It is noteworthy that the 
average number of plant partners shared by two pollinator species is 
less than one (0.69), making it difficult to infer a widespread tendency 
for sharing mutualistic partners. Actually, this issue extends to most of 
the mutualistic networks that have been investigated to date (all avail-
able at http://www.web-of-life.es/), and that have a very low connec-
tance (on average <7%), which supports the idea that specialization 
of interactions (and not nestedness) may promote the co-existence of 
multiple species (Pauw, 2013).

Identifying permitted interactions between species, and focusing 
on those only to assess species’ tendency to share partners could 
be a promising approach to shed light on this issue. The empty cells 
in a presence–absence adjacency matrix representing an ecological 
network contain both ecological and co-evolutionary information. 
Both are useful to improve our understanding on the functioning of 
complex systems, but traditional approaches do not offer straight-
forward ways to disentangle the first from the latter, leading to a 
unique–yet hardly interpretable–result. Conversely, the alternative 
approach we have discussed here analyzes the structure of a network 
from different angles, providing specific answers to properly defined 
hypotheses.

We do not question the importance of comparative studies trying 
to identify general patterns in ecology. However, we also think that 
the current ecological debate on the mechanisms promoting and reg-
ulating the complex structure of ecological network could benefit also 
from more targeted studies designed on a per case basis. We hope 
that this paper can be a step in that direction.
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