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ABSTRACT

Aim To develop a new probabilistic model that can be used to test for statistically
significant pair-wise patterns of species co-occurrence. The model gives the prob-
ability that two species would co-occur at a frequency less than (or greater than) the
observed frequency if the two species were distributed independently of one
another among a set of sites. The model can be used to classify species associations
as negative, positive or random.

Innovation Historically, the analysis of species co-occurrence has involved the use
of data randomization. An observed species presence–absence matrix is compared
with randomized matrices to determine if the observed matrix has structure, either
an excess or deficit of species positively or negatively associated with each other.
The computer algorithms used to randomize matrices can sometimes produce
Type I and Type II errors (when the randomization algorithm produces a biased set
of all possible matrices) due to the randomization process itself. The probabilistic
model does not rely on any data randomization, hence it has a very low Type I error
rate and is powerful having a low Type II error rate.

Main conclusions When applied to 10 different data sets the probabilistic model
revealed significant positive and negative species associations in most of the data
sets. Compared with previous analyses the model tended to find fewer significant
associations; this may indicate a generally low rate of Type I error in the model. The
model is easy to implement and requires no special software. The model could
potentially transform the way that ecologists test for species co-occurrence in a
wide range of ecological studies.
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INTRODUCTION

The analysis of species co-occurrence patterns has a long history

in ecology, dating back to at least the 1970s. Analysis of

co-occurrence patterns played a central role in earlier debates

about the importance of competition in structuring ecological

communities and the existence of assembly rules (Diamond,

1975; Connor & Simberloff, 1979, 1983; Diamond & Gilpin,

1982; Gilpin & Diamond, 1982; Gotelli & Graves, 1996; Weiher

& Keddy, 1999). To some degree, the controversy continues

(Ellwood et al., 2009; Kennedy, 2009; Ulrich et al., 2009; Chase &

Myers, 2011; Collins et al., 2011; Sanderson et al., 2011), and the

analysis of co-occurrence patterns remains a huge area of eco-

logical and statistical endeavour (Gotelli, 2000; Ladau, 2008;

Hui, 2009; Ulrich et al., 2009). A crucial question has always

been to what extent are co-occurrence patterns random versus

structured due to some organizing process? Moreover, this ques-

tion must be addressed in the context that no species occurs

randomly in nature, they all respond to environmental varia-

tion. Given this challenge, ecologists have long used null models

and data randomization to attempt to answer the main ques-

tion. But herein lies more controversy, because the metrics for

measuring co-occurrence and for testing its statistical signifi-

cance are not universally agreed upon. The metrics and various

algorithms for randomizing species presence–absence data have

different strengths and weaknesses regarding their statistical
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properties, computational complexities and biological realism

(Gotelli, 2000; Sanderson, 2000; Miklós & Podani, 2004;

Navarro-Alberto & Manly, 2009; Ulrich et al., 2009).

Most notably, the metrics and algorithms differ in Type I and

II error rates (Gotelli, 2000) where Type I error occurs when a

randomly associated pair of species is incorrectly identified as

being either positively or negatively associated and a Type II

error occurs when a truly positively/negatively associated pair is

incorrectly identified as being randomly associated. In part,

Type I and II errors may be caused by the randomization

process itself, if the algorithm does not randomize the species

presence–absence matrix in an unbiased way. Here, ‘unbiased’

means that no particular matrix is more likely to occur (in the

null set) than are others given the specified conditions of the

randomization such as conserved row and column sums. Most

randomization algorithms create random matrices such that

species incidence rates and richness values of sample sites are

conserved. That is, the randomized matrices have the same row

and column sums as does the real matrix. Alternatively, some-

times just the species incidence rates are conserved. These two

classes of randomization were given the labels of fixed–fixed

(F–F) and fixed–equiprobable (F–E) by Gotelli & Ellison

(2002a). Bias in randomization can arise when the algorithm

reproduces some of the exact same random matrices multiple

times or never produces some possible matrices during a given

set of iterations (typically 1000–10,000). That is, the iterations

do not cover the entire null space (Fig. 1). No algorithm pro-

duces every possible matrix during the randomization, except

perhaps for the smallest of matrices. This issue of biased ran-

domizations has recently attracted the attention of ecologists

and statisticians (Zaman & Simberloff, 2002; Miklós & Podani,

2004; Lehsten & Harmand, 2006; Navarro-Alberto & Manly,

2009; Sanderson et al., 2009; Fayle & Manica, 2010; Gotelli &

Ulrich, 2011). In a greater context, the use of data randomiza-

tion (as a null model and statistical test of inference) is not

distribution-free. The whole point of the randomization is to

produce a null distribution of a test statistic (a metric measur-

ing pair-wise co-occurrence or nestedness within an entire

matrix) so that the statistical significance of the observed value

of the test statistic can be assessed. But this is also a potential

source of Type I and II errors, not to mention a point of some

disagreement among ecologists.

In this paper, I develop and present a distribution-free and

metric-free approach to analysing species co-occurrence pat-

terns. The model is founded upon using basic probability

theory to derive exact probabilities that two species should

co-occur either more or less frequently than they actually do.

The model is strictly analytical; it requires no randomization.

Therefore, the probabilistic model can be considered an

improvement upon matrix randomization procedures; it does

not require a non-biased null distribution that presumably

samples all possible matrices. Moreover, the model is an

example of the more parsimonious approach of applying basic

math and probability theory to answer a research question in

lieu of relying upon statistical inference from distributions of a

test statistic.

Figure 1 The distribution of a hypothetical test statistic, D,
changes when the null space is completely represented. Panel (a)
shows a Type I error (P < 0.05, the proportion of the null
distribution to the right of the observed value of the test statistic);
null values to the extreme right are not produced by the
randomization algorithm. However, if a more complete and
representative null distribution (panel b) is produced, either by
a better randomization algorithm or a probabilistic model,
Dobs is no longer significant and hence a Type I error is avoided.
In panel (c) there is a Type II error (P > 0.05) because null values
to the extreme left are not produced. When they are produced
(panel d), Dobs is significant. Null distributions produced by some
randomization algorithms may not always represent the true
shape and location of the entire null space.
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THE PROBABILISTIC MODEL OF SPECIES
CO-OCCURRENCE

The probabilistic model of species co-occurrence allows one to

analytically (i.e. without randomization or simulation) obtain

the probability (P) that two selected species co-occur at a fre-

quency either less than (Plt) or greater than (Pgt) the observed

frequency of co-occurrence. These probabilities can be obtained

analytically under the condition where a species probability of

occurrence at each site is equal to its observed frequency among

all the sites. The following notation is used in developing the

model: Qobs is the observed number of sites having both species,

n is the total number of sites where either species could occur,

N1 is the number of sites occupied by species 1 and N2 the

number of sites occupied by species 2. (Here, ‘site’ is used in a

general way to denote any sample, survey area, plot, community,

island or habitat fragment.) The model is based upon calculat-

ing pj, the probability that species 1 and 2 co-occur at exactly j

sites, for j = 0 to N. For a given N or set of sites and a given j, there

is a limited number of ways that species 1 and 2 can be distrib-

uted among the sites so as to maintain or obey the observed N1

and N2. Therefore, the probabilistic model is essentially an

exercise in combinatorics, or determining the number of ways to

select r items out of a total set of n items, symbolized by
n

r( ) or

C(n, r). If max{0, N1 + N2 - N} � j � min{N1, N2} then

p
C N j C N j N j C N N N j

C N N C N N
j =

( ) × − −( ) × − −( )
( ) × ( )

, , ,

, ,
.2 2 1

2 1

(1)

In this equation, C(N, j) is the number of ways that j

co-occurrence sites could be arranged among the N sites. C(N -
j, N2 - j) is the number of ways that sites having only species 2

could be arranged among those not already having both species.

C(N - N2, N1 - j) is the number of ways that sites having only

species 1 could be arranged among those not having species 2.

These three quantities are multiplied together to get the total

number of ways that species 1 and 2 could be distributed among

N sites for a given N1, N2 and j (Fig. 2), i.e. the numerator of the

equation. The denominator simply represents the total number

of ways that species 1 and 2 can be arranged among N sites

without regard for j. So, the numerator is always a subset of the

denominator and hence pj is always < 1. If j > N1 then pj = 0. Also,

if j < N1 + N2 – N then pj = 0. Plt is obtained by determining pj for

all j < Qobs and then summing the pj, Plt = Spj for j = 0 to Qobs –

1. Similarly, Pgt = Spj for j = Qobs + 1 to N. When j = Qobs, then pj

= Pet the probability that by chance the observed co-occurrence

is exactly equal to j. Therefore, Plt + Pgt + Pet = 1 (Table 1).

The probabilistic model is also a statistical method of testing

for significant patterns of co-occurrence because the quantities

(Plt + Pet) and (Pgt + Pet) can be used as P-values testing whether

species 1 and 2 co-occur significantly less often or significantly

more often, respectively, than expected by chance. For example,

if Plt + Pet = 0.03 then species 1 and 2 have a significant negative

association, at a significance level of 0.05. If the two species truly

are distributed independently of one another then there is only

a 3% chance that the two species would co-occur at Qobs or fewer

sites.

Note that the probabilistic model is not equivalent to a bino-

mial exact test. In that test, the probability of an event occurring

(i.e. a ‘success’) in a ‘success/failure’ trial is used to obtain the

probability of j successes in N trials. If a ‘success’ is defined as the

co-occurrence of species 1 and 2 then the probability of success

is equal to P(1,2) or the probability that species 1 and 2 co-occur

at a given site, P(1,2) = N1/N ¥ N2/N (Bowers & Brown, 1982;

Veech, 2006). In the binomial exact test, pj = C(N, j) ¥ P(1,2)j ¥
[1 - P(1,2)N-j] which is not equivalent to equation 1. The differ-

ence between the binomial exact test and the probabilistic model

is probably due to species co-occurrence data violating assump-

tions of the former, such as independence of trials (sampling

sites) and the possibility that species co-occurrence at a site

(with outcomes ‘success’ or ‘failure’) does not truly represent a

Bernoulli trial. The binomial exact test does not apply to ana-

lysing pairwise co-occurrence patterns.

A substantial benefit of the probabilistic model (as a statistical

method) is that it completely eliminates one major source of

Type I and II errors in the testing of species co-occurrence

Figure 2 The number of unique combinations of species 1 and 2
distributed among a set of five sites (n = 5, sites are represented
by boxes) where N1 = 3, N2 = 4 and j = 2. The first set of 10
combinations shows all possible arrangements of the two sites
having both species, C(N, j) = C(5,2) = 10. Note that in each of
the 10 combinations, there are three sites (empty boxes) that have
not been assigned (N – j = 3). For each of the 10 combinations,
there are three ways of arranging species 2 among those three
empty sites or boxes, C(N - j, N2 - j) = C(3,2) = 3. For each of
those combinations, there is only one empty site (N – j – N2 – j
also written as N – N2 = 1) and thus only one way of placing
species 1, C(N - N2, N1 - j) = C(1,1) = 1. Multiplying these
quantities together, there is a total of 30 combinations possible.
In this example, all sites have either species 1 or species 2.
However, this need not be the case, N could be any number. In
this example, if n = 6, there are 180 possible combinations.
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patterns (although other sources still exist). Briefly, in any sta-

tistical inference test applied to data, there are at least four

sources of Type I and II errors: (1) violations of assumptions

about the distribution of the test statistic, (2) sampling error

(due the to limited number of samples not being truly repre-

sentative of the statistical population being sampled), (3) meas-

urement error (error in the way the variables are measured or

more generally error in the way the data are collected); and (4)

stochastic and/or systematic natural variation in the variables or

process being studied such that the variation is not accounted

for in any subsequent statistical testing (i.e. the variation is

caused by factors that are not being measured or assessed). In

the probabilistic model, error from the first source is completely

eliminated because there is no simulated or randomized distri-

bution of a test statistic. However, this source of error exists in all

other statistical tests of co-occurrence patterns. It is the error

assumed when a P-value is derived from a null distribution that

may not completely or randomly include (without any bias) all

possible versions of the presence–absence matrix.

Even with this benefit, the probabilistic model still has the

other sources of Type I and II errors (that need to be estimated)

as do the randomization-based tests. In addition, as is common

to all tests of pairwise co-occurrence patterns, the probabilistic

model classifies species pairs to categories (positive, negative or

random association) based upon an arbitrary significance level

(e.g. a = 0.05). This classification can sometimes represent the

commission of Type I or II errors. Fortunately, the amount of

possible Type I error is known; it equals the alpha level. For

example, if 100 species pairs are tested and 12 are classified as

positive or negative associations based on a = 0.05 then five of

the pairs could represent Type I errors (i.e. misclassifying a

random association as either positive or negative) that arise due

to error sources 2, 3 or 4. The amount of Type II error (i.e.

misclassifying a real positive or negative association as random)

cannot be known without knowing the power of the test when

applied to the given data, as is true of all statistical inference tests.

In order to quantify Type I and II error rates for the proba-

bilistic model, I simulated hypothetical data sets (species

presence–absence matrices) that represented random associa-

tions between species, and other data sets that represented posi-

tive and negative associations. The random data sets allowed for

the estimation of Type I error rate as the proportion of species

pairs that were found to have a significant positive or negative

association. The structured data sets were used to estimate Type

II error rate as the proportion of species pairs that had a non-

significant (random) association according to the probabilistic

model. Each data set contained 241 species for a total of 28,920

pairs, and either 10, 20, 50 or 100 sampling sites. Thus, there

were eight data sets, four random and four structured. The

structured data sets were built from the random ones by insert-

ing blocks of zeros and ones. The species within each data set

represented a wide range of incidence values, from relatively rare

species to very common, with most species having an interme-

diate frequency of occurrence, P(i), among the sampling sites.

Mean P(i) over all species in a data set was between 0.45 and

0.55, with P(i) values ranging from 0.1 to 0.9 within each data

set. Thus, the eight data sets were similar except for either having

structure or not and differing in the number of sampling sites.

As expected, the Type I error rate was very close to the

nominal alpha level (0.05) for all data sets (Table 2). Even with

this minimal level of Type I error, an adjustment of the alpha

level might be desired when testing dozens or more species so as

to further reduce the ‘study-wide’ Type I error rate. The Type II

error rate (b) was also relatively low, as indicated by the effect

sizes needed in order to get b = 0. Effect size was measured as

Table 1 Calculation of co-occurrence probabilities (Plt, Pgt, and
Pet) for two species in a hypothetical example where there are 40
sampling sites, species 1 is found at 10 sites, and species 2 is found
at 25 sites (n = 40, N1 = 10, N2 = 25).

Number of co-occurrence

sites (j) Pj SPj Pj ¥ j

0 0.000004 0.000004 0

1 0.0001 0.0002 0.0001

2 0.0023 0.0024 0.005

3 0.0175 0.0199 0.052

4 0.0747 0.0946 0.299

5 0.1882 0.2828 0.941

6 0.2852 0.5680 1.711

7 0.2580 0.8260 1.806

8 0.1340 0.9600 1.072

9 0.0362 0.9961 0.325

10 0.0039 1.0 0.039

The probability of co-occurrence at exactly j sites (Pj) is calculated for j
= 0 to 10 sites, Pj = 0 for all j > 10. If the two species co-occur at three sites
(Qobs = 3), then Plt = SPj for j = 0 to 2, Pgt = SPj for j = 4 to 10, and Pet =
P3. The two species would be negatively associated at a significance level
of 0.05 because Plt + Pet = 0.02. There is only a 2% chance that the two
species would co-occur at three or fewer sites if their distributions were
truly random of one another. In this example, expected co-occurrence
Qexp = S(Pj ¥ j) = 6.25 sites.

Table 2 Assessment of the Type I error rate for the probabilistic
model of species co-occurrence.

N Species pairs Mean ES Max ES Type I error rate

10 23,235 0.57 2.5 0.013

20 27,640 0.78 4.1 0.032

50 28,739 1.15 5.9 0.049

100 28,920 1.45 10.3 0.055

The table presents properties (species pairs, mean and maximum effect
sizes) of the simulated random data sets and the Type I error rate for a
= 0.05. Effect size (ES) is defined as the absolute difference between
observed and expected co-occurrence. Type I error was assessed as the
proportion of the simulated randomly associated species pairs that the
model revealed as incorrectly being either positively or negatively asso-
ciated. n = number of sampling sites. For a given data set, the number of
species pairs examined may not equal the total number of pairs
[C(241,2) = 28,920] because pairs with expected co-occurrence < 1.0
were not examined.
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the absolute difference between observed and expected

co-occurrence (measured in numbers of sites) for a pair of

species. Depending on the total number of sampling sites, effect

size could be as low as 1.6 to 4.3 sites at a = 0.05 and 4.2 to 9.5

sites at a = 0.0001 while achieving b = 0 and essentially a statis-

tical test with power ª 1 (Table 3). To put this in perspective,

even with a conservative a = 0.0001 and 100 sampling sites, the

difference in observed and expected co-occurrence would need

to equal only 10% (9.5 sites) of the total number of sites in order

for the probabilistic model to reveal a significant positive or

negative association. However, with fewer sites, the model is not

as powerful. For data sets of 10 or fewer sites, the model does not

have much power regardless of alpha level. Also, in general, the

difference in observed and expected co-occurrence must be at

least two sites in order for the model to have any power (b � 1),

regardless of the number of sampling sites (Table 3). Overall, the

power of the probabilistic model compares very well with

Gotelli & Ulrich’s (2010) Bayesian approach that has power

ranging from 0.41 to 1.

The probabilistic model shares an important feature with

most matrix randomization procedures (e.g. F–E and F–F algo-

rithms), all species can potentially occur at all sites. That is, any

site included in the set of N (probabilistic model) or included as

a row in a species presence–absence matrix is ‘eligible’ for receiv-

ing the species during the randomization process. Randomiza-

tion algorithms that conserve the observed species incidence

values (column sums in site ¥ species matrices) produce null

matrices in which each species probability of occurrence is

P(i) = Ni/N, just as in the probabilistic model. More precisely, the

probabilistic model is the analytical analogue of F–E randomi-

zation algorithms. That is, for a given species, the number of

occurrences among sites is the same in observed and rand-

omized data (fixed species incidences), but number of species at

a given site is not fixed. In F–E algorithms and the probabilistic

model, sites may have the same, more or fewer species than what

holds for the observed data. Therefore, F–E algorithms and the

probabilistic model ‘assign’ species to sites without assuming

that some sites may be more likely to have the species than are

others. On the other hand, F–F algorithms make this assump-

tion; these algorithms maintain fixed species richness values at

sites (row sums) during the randomization process. Thus, sites

differ in their probabilities of receiving a species based directly

on their species richness value.

Such site-specific ‘colonization probabilities’ cannot be

directly incorporated into the probabilistic model (i.e. equation

1 cannot be modified to include such probabilities). However, it

is possible to apply the model in a way that takes into account

the possibility that sites vary in their probability of containing

(i.e. being colonized by) species i. The researcher can decide a

priori to group sites into subsets where sites share the same or

very similar colonization probabilities. Sites may often differ in

species richness, area that is being sampled, habitat composition

and other environmental variables as well as isolation or dis-

tance from a ‘mainland’ source of colonizing species (in the

context of island biogeography dynamics). These differences can

affect colonization probabilities, but they can be controlled by

applying the model separately to subsets of similar sites. For

instance, the grouping variable could be site richness itself

(essentially duplicating a F–F algorithm), area of sampling site

or habitat of a particular type. Of course, a researcher may have

controlled for such factors in the study design phase (e.g. Gotelli

& Ellison, 2002a) such that all sites can be used in a single

application of the probabilistic model.

In many instances, it may be difficult to know a priori whether

sites actually do differ in their probabilities of containing a given

species. Often, the species distribution data (presence–absence

matrix) are used to model these differences as in F–F algorithms

that use the observed species richness value to determine how

many species a site should receive during the randomization

process. There may be good reason to randomize species presence–

absence matrices in this way (Gotelli & Graves, 1996), but this

restriction need not apply to analyses that are testing for non-

random pairwise species associations across the entire suite of

sampling sites where the two species could potentially co-occur.

EXAMPLES OF MODEL APPLIED TO REAL
DATA SETS

I applied the probabilistic model to 10 sets of published species

presence–absence data that were previously evaluated for sig-

Table 3 Assessment of the Type II error
rate (b) for the probabilistic model of
species co-occurrence.

N

Simulated data Effect size for given Type II error rate

Species pairs Mean ES Max ES b0.05 = 0 b0.0001 = 0 b0.05 = 1

10 25 157 0.84 2.5 > 1.6 None < 1.6

20 27 498 1.32 5.0 > 2.2 > 4.2 < 1.5

50 28 757 3.32 10.4 > 3.3 > 6.8 < 2.0

100 28 920 6.95 21.5 > 4.3 > 9.5 < 2.4

The table presents properties of the simulated structured data sets and the effect size (ES) required to
manifest a given Type II error rate for a = 0.05 and 0.0001. Effect size is defined as the absolute
difference between observed and expected co-occurrence. As with all statistical tests, the power of the
model is 1 - b. n = number of sampling sites. For a given data set, the number of species pairs
examined may not equal the total number of pairs [C(241,2) = 28,920], because pairs with expected
co-occurrence < 1.0 were not examined.
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nificant pair-wise species associations. These data sets were

finches on the Galapagos Islands (Sanderson, 2000), rodents in

three major deserts of North America (Bowers & Brown, 1982;

Brown & Kurzius, 1987; Patterson & Brown, 1991; Fox & Brown,

1993), Anolis lizards on Puerto Rico and Jamaica (Haefner,

1988), forest and bog ants in New England (Gotelli & Ellison,

2002b), carabid beetles on islands in lakes of Poland (Ulrich &

Zalewski, 2006; Gotelli & Ulrich, 2010) and terrestrial isopods

on Greek islands in the Aegean Sea (Sfenthourakis et al., 1999,

2006). Together these data sets vary considerably in taxonomic

group, numbers of species and sampling sites (Table 4) and in

the way that the original data were collected. They represent

spatial scales ranging from landscape to biogeographic, i.e. sam-

pling sites were separated by tens to hundreds of kilometres. In

addition, the data sets were selected so that the assumption of a

species being equiprobable among sites was likely to be obeyed.

For most data sets, the probabilistic model revealed instances

of positive and negative species associations, although positive

associations were typically more common than negative asso-

ciations (Table 4). Relatively equal numbers of positive and

negative associations were found for the three desert rodent data

sets and the Greek isopod data set (Table 4). Some of the results

contrast sharply with previous analyses of the same data sets. For

rodents, Bowers & Brown (1982) reported 75, 67 and 88 nega-

tively associated pairs along with 41, 37 and 45 positively asso-

ciated pairs in the Great Basin, Mojave and Sonoran Deserts.

The probabilistic model revealed 10 or fewer positive or negative

associations in each rodent data set. For their ant data sets,

Gotelli & Ellison (2002a) did not conduct any pairwise

co-occurrence tests, although they reported large matrix-wide

C-scores (i.e. an excess of negative associations) for forest ants.

The probabilistic model also revealed some negative associa-

tions between forest ant species, although these were fewer than

the positive associations (Table 4).

There was also some general agreement between the proba-

bilistic model and some previous analyses. For Galapagos Island

finches, Sanderson (2000) reported 13 ‘anomalous’ pairings,

described as those occurring more or less often than chance

expectation. The probabilistic model revealed a similar number,

15 non-random associations (mostly positive). For bog ants,

Gotelli & Ellison (2002a) report small or non-significant

matrix-wide C-scores (i.e. indicating positive or random asso-

ciations). Similarly, the model found only two non-random

species pairs. For Anolis lizards, Haefner (1988) did not test for

pair-wise co-occurrence, but states that ‘the non-random

models did not differ from the random models’ for sites on

Jamaica. Again, this conclusion is consistent with the probabil-

istic model; it did not reveal any instances of non-random asso-

ciations among Jamaican Anolis (Table 4). For carabid beetles in

Poland, Gotelli & Ulrich (2010) reported 11 negative associa-

tions which closely matches the 10 indicated by the probabilistic

model; the method used by Gotelli & Ulrich (2010) did not

allow for identifying positive associations. Lastly, Sfenthourakis

et al. (2006) found 21 positive and 24 negative species associa-

tions for isopods on Greek islands, similar to the 1:1 positive:n-

egative ratio of the probabilistic model. They tested 1225 pairs

so their overall percentage of non-random pairs (4%) was

slightly greater than that found by the probabilistic model

(1.1%).

For each data set analysed in the present study, the model

revealed many ‘random’ species associations. There are two pos-

sible categories of ‘random’ association. First, random associa-

tions might be the result of insufficient statistical power and

represent Type II errors that arise from having a low alpha level.

In other words, species 1 and 2 get classified as a random asso-

ciation (because P > 0.05) although the difference between

observed and expected co-occurrence is substantial [expected

co-occurrence, Qexp = S(Pj ¥ j); Table 1]. This may explain some

of the random associations in the data sets that had relatively

low numbers of sampling sites (Table 4). Indeed, among the 10

data sets, there is a positive relationship (r = 0.74) between

number of sampling sites and the percentage of species pairs

classified as non-random. As with the hypothetical simulated

data, this suggests that the probabilistic model (as a statistical

test) has diminished power with fewer sampling sites. This is

also true for all other statistical tests of co-occurrence and nest-

Table 4 Number of positive, negative and random species associations for data sets analysed with the probabilistic model of species
co-occurrence.

Data set Species Sites Positive Negative Random Percentage non-random

Galapagos Island finches 13 17 14 1 49 23.4

Great Basin Desert rodents 16 39 10 6 39 29.1

Mojave Desert rodents 12 18 0 1 36 2.7

Sonoran Desert rodents 23 38 5 3 30 21.1

Puerto Rican Anolis lizards 8 11 1 1 19 9.5

Jamaican Anolis lizards 6 9 0 0 14 0

New England forest ants 37 22 24 12 224 13.8

New England bog ants 24 22 2 0 55 3.5

Polish island beetles 71 17 58 10 770 8.1

Greek island isopods 56 14 5 6 913 1.1

The model was only applied to those species pairs whose expected number of co-occurrences [P(1,2) ¥ N] > 1.0. A significance level of a = 0.05 was used
to classify species associations.
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edness. Second, the association between two species may be

truly random, with observed @ expected co-occurrence. In all

the data sets analysed, many of the random associations

represented species pairs whose observed and expected

co-occurrences did not differ by more than a few sampling sites.

However, the probabilistic model will also classify as ‘random’

two widespread species that occur at all, or a vast majority of,

sampling sites. Sfenthourakis et al. (2006) also noted this poten-

tial outcome in their randomization procedure, but suggested

that it is a bias against finding positive associations rather than a

definitive demonstration of a truly random association. The best

way to resolve the difference between random and positive

would be to sample more sites.

THE FUTURE OF SPECIES CO-OCCURRENCE
ANALYSES

The probabilistic model could represent a major step forward in

the analysis of species co-occurrence patterns. It is a different

approach from that used in all previous analyses of pairwise

co-occurrence and nestedness of presence–absence matrices.

The probabilistic model is computationally simpler and more

direct than previous methods that rely on data randomization

and metrics (e.g. checkerboards, C-score, matrix temperature)

that may not be intuitive. The metric used by the probabilistic

model (number of sites where two species co-occur) could not

be any more direct and intuitive. In addition, results from apply-

ing the model to separate data sets can be standardized to allow

for meaningful comparison. Standardized effect sizes are often

used to compare the output of different null models (Ulrich &

Gotelli, 2007; Veech, 2012) where standardized effect size is cal-

culated as the observed – expected value (of a test statistic or

metric) divided by the standard deviation of the null distribu-

tion. Because there is no null distribution produced in the

probabilistic model, the difference between observed and

expected co-occurrence is ‘standardized’ on the number of sam-

pling sites (N). Effect size standardized in this way ranges from

-1 to 1 and controls for the number of sampling sites. This could

be a useful metric to compare among different species pairs

whose co-occurrence is based on analysing data sets where N

varies.

In studies of species co-occurrence, the current trend is to

analyse pairs of species instead of entire matrices (e.g. Sfenthou-

rakis et al., 2006; Veech, 2006; Sanderson et al., 2009; Gotelli &

Ulrich, 2010). In this regard, the probabilistic model could

quickly become widely applied. The model also has some flex-

ibility in allowing the user to test particular hypotheses. For

instance, the set of sites that makes up N (and its numerical

value) affects the probabilities determined by the probabilistic

model. The user should decide a priori how to define this set

based on the null hypothesis being tested. For example, a test of

the effect of broad-scale evolutionary factors (geographic barri-

ers, vicariant events) on co-occurrence might include sites

within and outside the geographic range of species 1 but within

range of species 2 (and vice versa). In this way, one might be

interested in testing whether a given amount of sympatry pro-

duces a negative association between two species. In a different

study, the goal might be to test the role of a present-day envi-

ronmental factor (e.g. soil type) in either promoting or prevent-

ing co-occurrence, in which case only sites with the particular

soil type (and within the geographic range of both species)

would be included in the set defined by N.

As currently formulated, the probabilistic model does not

account for imperfect detection of species. That is, the model

does not allow for the possibility of false absences or failing to

record a species when it is actually present at a site. In practice,

this neglect of false absences probably does not bias the model

toward finding more positive and fewer negative associations (or

vice versa). False absences (and false presences) in the data

simply represent a form of measurement error and a source of

Type I and II errors that could be shared by all methods of

analysing co-occurrence. However, a recent extension of occu-

pancy modelling allows for the estimation of species detection

probabilities as they might be influenced by a variety of factors

including the presence of other species (MacKenzie et al., 2004;

Richmond et al., 2010). This method could prove useful in ana-

lysing co-occurrence patterns in large data sets of tens to hun-

dreds of species. However, to date, the method has been applied

to test for co-occurrence in studies involving only a few species

occurring among a set of sites that were repeatedly surveyed

(Bailey et al., 2009; Richmond et al., 2010; Waddle et al., 2010).

Regardless of the particular analysis that is used, future

studies of species co-occurrence, assembly processes, species

interactions and distributional patterns should attempt to make

a priori predictions of the species pairs that should be (accord-

ing to theory or the test hypothesis) positively, negatively and

randomly associated (Gotelli & Ulrich, 2010). This species-

specific prediction has generally been missing in most previous

studies that tested for overall structure in presence–absence

matrices or tested for significant pair-wise associations among

all possible species pairs. An additional benefit is that focused

hypothesis testing will also reduce the number of ‘study-wide’

Type I errors. The probabilistic model of species co-occurrence

is conceptually intuitive and easy to apply; it could become very

useful in analysing pair-wise co-occurrence patterns.
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