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ABSTRACT

The analysis of species co-occurrence patterns continues to be a main pursuit of

ecologists, primarily because the coexistence of species is fundamentally impor-

tant in evaluating various theories, principles and concepts. Examples include

community assembly, equilibrium versus non-equilibrium organization of

communities, resource partitioning and ecological character displacement, the

local–regional species diversity relationship, and the metacommunity concept.

Traditionally, co-occurrence has been measured and tested at the level of an

entire species presence–absence matrix wherein various algorithms are used to

randomize matrices and produce statistical null distributions of metrics that

quantify structure in the matrix. This approach implicitly recognizes a presence–
absence matrix as having some real ecological identity (e.g. a set of species exhib-

iting nestedness among a set of islands) in addition to being a unit of statistical

analysis. An emerging alternative is to test for non-random co-occurrence

between paired species. The pairwise approach does not analyse matrix-level

structure and thus views a species pair as the fundamental unit of co-occurrence.

Inferring process from pattern is very difficult in analyses of co-occurrence;

however, the pairwise approach may make this task easier by simplifying the

analysis and resulting inferences to associations between paired species.
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INTRODUCTION

The analysis of species co-occurrence has a long history

played out in studies ranging from community ecology to

biogeography. Jared Diamond’s classic study of the distribu-

tions of terrestrial birds on islands of New Guinea was one

of the first analyses of species co-occurrence (Diamond,

1973, 1975). His study emphasized diffuse competition – ‘the

complex situations resulting from the sum of competitive

effects from many other somewhat similar species’ (Dia-

mond, 1975, p. 348) – and introduced the idea of assembly

rules and forbidden combinations (of species). By definition,

testing for diffuse competition requires analysis of co-occur-

rence among multiple species within an assemblage, not

between just two species of a pair. In subsequent years, Dia-

mond’s analytical methods were rigorously criticized (Con-

nor & Simberloff, 1979) and confidently defended (Diamond

& Gilpin, 1982; Gilpin & Diamond, 1984); see Sanderson

(2000) for a review. As a result of these historical beginnings,

studies of species co-occurrence have come to be character-

ized by the methods utilized (and defended) as well as a

primary focus on the entire assemblage (i.e. the presence–

absence matrix) as the unit of analysis. The matrix-level

approach is well illustrated by the study of nestedness, the

way in which smaller sets of species form orderly subsets of

increasingly larger sets (Wright & Reeves, 1992; Almeido-

Neto et al., 2008; Ulrich et al., 2009).

An emerging alternative to the matrix approach is to

examine pairwise co-occurrence (Sanderson, 2000; Sfentho-

urakis et al., 2004, 2006; Veech, 2006; Sanderson et al., 2009;

Gotelli & Ulrich, 2010; Collins et al., 2011; Pitta et al., 2012)

with methods that can detect patterns of positive, negative

or random association between two species (Veech, 2013; see

also Ricklefs, 2011, for a pairwise assessment of abundances).

Beyond being a more comprehensive statistical assessment,

these new methods are also suggesting (sometimes implicitly)
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that species may not be organized into neat and tidy com-

munities that exist as discrete spatial entities. At the very

least, the local community concept (i.e. Clementsian organi-

zation of nature into very similar sets of species repeated at

different locales) may be insufficient as a framework for

understanding the geographical distribution of species and

diversity patterns (Ricklefs, 2008). If so, then analyses of co-

occurrence patterns are most appropriate when conducted

on species pairs instead of on entire species presence–absence

matrices. Of interest, Pielou (1977) described a pairwise

approach several decades ago, although it never caught on.

In this essay, I describe more recent pairwise approaches and

distinguish them from matrix-level approaches and specifi-

cally emphasize benefits of the former. I also argue that the

study of species co-occurrence now needs to move beyond

the view that nature is organized into presence–absence

matrices.

PAIRWISE AND MATRIX-LEVEL APROACHES

Most methods for analysing species co-occurrence can be

classified as either pairwise or matrix-level approaches

(Table 1). The main difference is that the latter calculate a

co-occurrence metric as a property of the entire presence–

absence matrix whereas the former examine co-occurrence

‘species-by-species’ (Sfenthourakis et al., 2006; Pitta et al.,

2012) to determine whether a particular pair of species is

aggregated, segregated or random in occurrence (Gotelli &

Ulrich, 2010). A recent approach developed by Arita et al.

(2012) is best described as a hybrid given that it requires cal-

culations performed on an entire matrix but the metric (pro-

portional species richness) is obtained for each species

separately (Table 1). Examples of matrix-level metrics

include matrix temperature (Patterson & Atmar, 1986; Atmar

& Patterson, 1993), number of unique species combinations

(in the matrix), and the variance ratio (Schluter, 1984).

Other metrics (e.g. C-score, number of checkerboards) can

be calculated for species pairs but are typically aggregated

(summed or averaged) for entire matrices. The most

straightforward way to measure co-occurrence between two

species is by the observed number of times that the two spe-

cies co-occur relative to the expected number of times (San-

derson, 2000; Sfenthourakis et al., 2004, 2006; Veech, 2006,

2013; Pitta et al., 2012). Some authors have referred to this

as the ‘natural metric’ (Sfenthourakis et al., 2004, 2006; Pitta

et al., 2012). The expected co-occurrence can be obtained

through randomization of the matrix (randomizing species

occurrences among sites) (Sanderson, 2000; Sfenthourakis

et al., 2006) or through basic probability theory as

Jexp = (N1/N) 9 (N2/N) 9 N (Bowers & Brown, 1982;

Table 1 Analytical methods previously used to study species co-occurrence (broadly defined). More detailed descriptions of each

method can be found in the listed references (although these are not intended to represent a complete list).

Method of

analysis

Type of

analysis Description and usage Reference(s)

Classic null

models

Matrix-

level

Broad class of null models that simultaneously randomize the occurrences of all species

among sites. The models are distinguished by different constraints on the randomization

algorithms. Used to find statistically significant co-occurrence patterns for entire

presence–absence matrices.

Gotelli (2000),

specifically Table 2

Nestedness

analysis

Matrix-

level

Various algorithms (also sometimes used in classic null models) that randomize species

occurrences among sites. Used to detect patterns of nestedness – less species-rich sites

as orderly compositional subsets of sites with greater species richness.

Patterson & Atmar

(1986), Wright &

Reeves (1992),

Ulrich et al. (2009)

Network

analysis

Matrix-

level

Annealing algorithm is applied to a presence–absence matrix (a geographical, taxonomic

or guild-based matrix) so as to maximize modularity or the amount of connectedness

among nodes (species). Used to find modules (groups of highly connected species) and

compartments (spatial clustering of species’ range boundaries).

Carstensen & Olesen

(2009), Th�ebault

(2013)

Range-

diversity

plots

Hybrid Calculates and depicts proportional range richness of a species as the mean number of

species occurring at the same sites as the focal species. Tests of significance can be

conducted through various matrix randomization algorithms. Used to examine

co-occurrence in the context of an entire assemblage and its geographical distribution

(among other uses).

Arita et al. (2012)

Causality

analysis

Pairwise Compares pairwise co-occurrence from two or more types of presence–absence matrix.

The geographical matrix is the traditional form where species are recorded from

sampling sites; the ecological matrices consist of species assigned to units representing

habitat types or other ecological factors. A fixed–fixed algorithm randomizes species

occurrences among units while conserving unit species richness and species incidences.

For each matrix, species pairs are classified as positive, negative or no association. Used

to examine the ‘causal basis of co-occurrence’ and to identify the ecological factors that

most influence co-occurrence.

Sfenthourakis et al.

(2006)

Probability

model

Pairwise Applies pure probability-based equations to identify species pairs as having a positive, a

negative, a random or an indecisive association. Used to analytically classify (without

data randomization) species pairs to the above categories.

Veech (2013)
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Veech, 2006, 2013; Ara�ujo et al., 2011), where Jexp represents

the expected number of sites (or samples) that have species 1

and 2, N1 is the number of sites that have species 1, N2 is

the number of sites that have species 2, and N is the total

number of sites. Note that N1/N and N2/N are the marginal

probabilities of occurrence of species 1 and 2, respectively,

also known as their incidence rates.

When one wishes to test for statistical significance of an

observed co-occurrence metric (pairwise or matrix-level)

then the presence–absence matrix is often randomized to

produce a null distribution of the metric as a basis for com-

parison (i.e. deriving a P-value). There are many algorithms

for conducting the randomization and these vary in their

Type I and II error rates (Gotelli, 2000). Perhaps, the most

common and oft-recommended algorithm is the fixed–fixed

(F-F) randomization; the column and row sums of the

matrix remain fixed at their original values during the ran-

domization (Gotelli, 2000). That is, the randomization does

not alter the species incidence rates (row sums) or richness

of the sampling sites (column sums). Incidence rates and

richness are implicitly assumed to be real ecological proper-

ties of the species assemblage that should not be altered

when testing for non-random patterns of co-occurrence in

the matrix or between species in a pair. The opposite of the

F-F algorithm is the equiprobable–equiprobable (E-E) ran-

domization in which column and row sums are free to vary.

All species are assumed to be equally probable in occurring

at a given sampling site (differences in observed incidence

rates are ignored during the randomization) and all sampling

sites are assumed to be equally probable in having a given

species (differences in observed richness among sites are

ignored). The logic behind these different randomization

algorithms has been thoroughly discussed elsewhere (Connor

& Simberloff, 1979; Gotelli & Graves, 1996) and will not be

repeated in this essay. However, my main point, relevant to

this essay, is that no one randomization algorithm is more

logical or ecologically realistic than any other; the algorithms

primarily differ in their statistical properties (Gotelli, 2000;

Ulrich & Gotelli, 2013). See Ulrich & Gotelli (2013) for a

complete review and evaluation of 15 metrics used to mea-

sure species co-occurrence in conjunction with matrix ran-

domization.

When testing matrix-level co-occurrence patterns, it is

obviously necessary to randomize the entire presence–

absence matrix in order to determine if the co-occurrence

metric is significantly different from random. However, this

need not be the case when using a pairwise approach. In its

most basic form, the pairwise approach is solely concerned

with testing pairs of species one-by-one as though there are

Sp number of 2 9 N matrices (species by sampling site) each

examined separately, where Sp could represent all possible

species pairs, Sp = N!/[2 9 (N � 2)!], or some pre-selected

group of pairs. Any of the randomization algorithms and

matrix-level metrics could be applied to these 2 9 N matri-

ces. However, a recently proposed pairwise method circum-

vents the need for randomization.

PROBABILISTIC MODEL OF CO-OCCURRENCE

The probabilistic model of species co-occurrence (Veech,

2013) is based on calculating the number of ways that two spe-

cies can co-occur at exactly j number of sampling sites given

that each species occurs at N1 and N2 number of sites out of a

total of N. This quantity is the product of the following combi-

nations: a = C(N, j), b = C(N � j, N2 � j), c = C(N � N2,

N1 � j), where a represents the number of unique arrange-

ments of species 1 and 2 co-occurring at j number of sites

among all sites, b is the number of ways that species 1 can be

placed among the remaining sites that do not already have spe-

cies 2, and c is the number of ways that species 2 can be placed

among the remaining sites that do not already have species 1.

The product, abc, is then divided by the number of unique

ways that species 1 and 2 can be arranged among all sites with-

out regard for j. This quantity is d 9 e, where d = C(N, N2)

and e = C(N, N1). The probability, pj = abc/de, represents the

probability that species 1 and 2 co-occur at exactly j number of

sites. The probability, pj, is then calculated for all j satisfying

the inequality: max{0, N1 + N2 � N} ≤ j ≤ min{N1, N2}.
Finally, the quantity Σpj for all j < Jobs represents the probabil-

ity that the two species would co-occur at fewer that Jobs sites

(the number of sites where the two species actually co-occur).

Likewise, Σpj for all j > Jobs is the probability that the two spe-

cies would co-occur at greater than Jobs sites. Without requir-

ing any randomization of the data, the probabilistic model

analytically determines the probability that two species of a

pair co-occur at an observed frequency (Jobs) greater than (Pgt)

or less than (Plt) the frequency expected if the two species were

distributed randomly of each other (Jexp). Species pairs can be

classified as positive, negative or random associations based

upon the values of Pgt (or Plt) relative to a pre-defined signifi-

cance level. The model has several desirable statistical proper-

ties including rigorous control of Type I and II error

probabilities (Veech, 2013).

The probabilistic model is essentially an analytical analogue

of an F-E randomization algorithm in which species incidences

are fixed but sampling sites are equiprobable in their chances

of having a given species. (Granted, the researcher has control

over which sites are included in the set of N and it is generally

best practice not to include sites outside the species’ geograph-

ical range.) Therefore, the probabilistic model examines co-

occurrence without regard for any constraints imposed by var-

iation in species richness among sampling sites or variation in

any other site characteristic (e.g. area). In this way, the proba-

bilistic model implicitly recognizes the biological validity of

incidence rates (which are fixed in the model) but does not

subsume co-occurrence patterns under patterns of species

richness. In fact, the contrary may be more realistic: co-occur-

rence patterns determine differences among sampling sites

(ecological communities) in richness and composition and

thus there is no reason that sites must be equiprobable in the

probabilistic model. That is, site richness can be an uncon-

strained variable in the model if one views richness as the con-

sequence of co-occurrence, instead of vice versa. Nonetheless,
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the F-E randomization algorithm (in null models) is most

appropriately applied to data from equal-sized sampling units

(sites) of similar ecological conditions. In situations where

sites vary in a meaningful environmental property, the equi-

probable assumption might not be justified. I am working on a

modification of the probabilistic model that will remove the

assumption of equiprobable sites (see below).

INDEPENDENCE OF SPECIES IN

CO-OCCURRENCE ANALYSES

Previous authors have correctly pointed out that the co-occur-

rence of two species in a pair may not be completely indepen-

dent of a third species (Zaman & Simberloff, 2002;

Sfenthourakis et al., 2006; Gotelli & Ulrich, 2010; Pitta et al.,

2012). That is, if species x and y tend to positively co-occur

while x and z also positively co-occur then species y and z

might also be expected to co-occur positively (the same sce-

nario can also be presented with negative co-occurrence). This

non-independence could be problematic for interpreting pair-

wise co-occurrence patterns involving multiple species pairs

(Zaman & Simberloff, 2002); for example, x and y may be pos-

itively and significantly associated with one another simply

because each is significantly associated with z. However, this

need not always be the case. Species x and y might co-occur at

different sites than do x and z such that y and z never or rarely

co-occur (Sfenthourakis et al., 2006). From the perspective of

set theory, co-occurrence of x, y and z with each other (in

pairs) is non-independent only when the intersection (number

of co-occurrence sites) of x and y is large and intersection of x

and z is large compared with each set x, y and z. In that case,

intersection of y and z would also be large and the three species

would co-occur at a large proportion of the total number of

sites and the species pairs (xy, xz and yz) would not be inde-

pendent. Researchers using a pairwise approach should be cog-

nizant of such non-independence when tallying the number of

positive and negative associations in a dataset.

Of course, non-independence of species pairs might repre-

sent ecological reality. For example, positive co-occurrence

should exist among two or more competing prey species and

a predator species when there is predator-mediated coexis-

tence. This describes the situation where competitively infe-

rior prey species are able to coexist with a competitively

dominant prey species whose abundance is limited by the

predator (Paine, 1974; Caswell, 1978; Shurin & Allen, 2001).

Non-random co-occurrence of three or more species (i.e.

non-independence of species pairs) is a characteristic of a

dataset more so than the method of analysis. Indeed, some

methods (e.g. network analysis) could be useful in identify-

ing sets of closely linked species (see below).

TESTABLE PREDICTIONS

Several authors have recently suggested that the study of

species co-occurrence could be improved conceptually and

heuristically if researchers would specify a priori the co-occur-

rence patterns expected (predicted) in the data (Sfenthourakis

et al., 2006; Gotelli & Ulrich, 2010; Veech, 2013). Historically,

analysis of co-occurrence has consisted primarily of post hoc

interpretation; that is, testing for non-random pattern and

then proposing an explanation instead of boldly and precisely

predicting patterns based upon knowledge of ecological pro-

cesses and principles. At the very least, researchers should be

able to develop predictions based on species traits (e.g. habitat

preferences, competitive ability, climatic tolerances) and site

properties. The importance of prediction (i.e. formal hypothe-

sis testing) is that it provides a more rigorous test of proposed

explanation.

A previous study by Sfenthourakis et al. (2006) is a step in

the right direction. Although they did not make precise pre-

dictions for how specified species should be associated, they

did propose and use an insightful framework to distinguish

between ecological and geographical factors (processes). This

framework involves compiling an ‘ecological matrix’ in addi-

tion to the typical ‘geographical matrix’. The geographical

matrix is a species 9 sampling site matrix. The ecological

matrix replaces actual physical sampling locations with par-

ticular environmental variables or characteristics (e.g. low

elevation, coniferous vegetation, calcareous substrate) that

have been recorded for each site (see Table 4 in Sfenthoura-

kis et al., 2006). For example, if species 1 was found at sam-

pling sites that have coniferous vegetation then the column

representing ‘coniferous vegetation’ and the row representing

‘species 1’ is given a value of ‘1’ to denote the species pres-

ence for that habitat variable. Applying a pairwise approach

on both the geographical and ecological matrices allows a

researcher to predict and interpret patterns of co-occurrence

(see Table 1 in Sfenthourakis et al., 2006). For example,

competitive exclusion should lead to two potentially compet-

ing species having a positive pairwise association in the eco-

logical matrix (because they have similar niches) but a

negative pairwise association in the geographical matrix (i.e.

no syntopy anywhere) (Sfenthourakis et al., 2006).

Much of the insight and benefit of the Sfenthourakis et al.

(2006) framework is a result of the comprehensive character-

ization of environmental conditions at each site. They used an

ecological matrix that had 41 environmental variables repre-

senting all types of factors that could be important to the dis-

tribution of the study organisms, terrestrial isopods. They also

explicitly used a pairwise approach for analysing co-occurrence

instead of a matrix-level approach. This further facilitated their

ability to classify each species pair as a positive, negative or

neutral association. In a somewhat analogous way, the proba-

bilistic model can also be used to examine the relative roles of

different environmental variables on species co-occurrence.

The set of sampling sites (NX) used in the analysis can be spec-

ified so as to only include sites that are similar for a given vari-

able, X. The association between two species is then examined

for NX and classified as positive, negative or random along

with calculating the difference between observed and expected

co-occurrence, Jobs � Jexp. The same steps are repeated for the

set of remaining sites not in NX. Subsequent comparison of
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the results of the two analyses (and multiple analyses of this

type) then may indicate which environmental factors are most

responsible for the observed co-occurrence (or lack thereof).

The environmental variables could even be species richness

and the presence of a particular third species.

Predictions about species co-occurrence can also be based

on species traits, regardless of whether the analysis uses infor-

mation about site characteristics. It is relatively common to

test for non-random co-occurrence patterns in subsets of spe-

cies within the same taxonomic units (e.g. genera or families)

to determine if evolutionary relatedness (and hence trait simi-

larity) affects co-occurrence. Such tests rely on the notion that

evolutionarily closely related species are more likely to be

potential competitors (i.e. have relatively greater niche over-

lap) than are distantly related species (Elton, 1946; Denno

et al., 1995; Losos, 2008; Valiente-Banuet & Verd�u, 2008;

Wiens et al., 2010; Ricklefs, 2011; Violle et al., 2011). How-

ever, researchers could go even further by identifying a priori

particular traits that might mediate (or prevent) coexistence.

Exact predictions could then be made for specific pairs based

on their traits. Further, species traits (or at least trait–environ-

ment interactions) can also be formally incorporated into the

co-occurrence analysis (e.g. Sfenthourakis et al., 2006). I am

currently developing an extension of the probabilistic model

that will allow users to specify a probability that a particular

species could occur at a given site. In this way, N (total num-

ber of occupiable sites) is adjusted based on either species

traits or environmental properties of the sites.

The pairwise approach does not rely on the overly simplis-

tic assumption that species affect one another only as pairs

isolated from all other species. Processes such as predator-

mediated coexistence involve more than two species and

hence the resultant co-occurrence pattern will reflect that.

Pairwise analyses might still be used in those scenarios to test

hypotheses. However, new methods such as network analysis

(Carstensen & Olesen, 2009; Ara�ujo et al., 2011; Fontaine

et al., 2011; Carstensen et al., 2012) that test for non-random

clusters of species among sites (i.e. modules and compart-

ments; Th�ebault, 2013) may be ideal for uncovering the co-

occurrence patterns among multiple (more than two) species

(Table 1). These methods primarily attempt to identify the

clusters (modules) and compartments within a matrix in a

way roughly analogous to how pairwise approaches attempt

to identify the positive, negative and random species associa-

tions. These are essentially tests for structure within a matrix

but not tests for any emergent property of a matrix (see next

section). As such, network analysis does not carry the hidden

assumption that a presence–absence matrix is a real ecologi-

cal entity, unless of course an entire matrix is found to be

one large module.

PRESENCE–ABSENCE MATRICES: NECESSITY

OR CONVENIENCE?

Is the species presence–absence matrix a necessity for analysing

co-occurrence and thinking about how species assemblages are

geographically structured or is it simply a convenient way to

organize and store data? The pairwise approach suggests the

latter. If causative mechanisms can be tested and found by

analysing species associations one-by-one then there is no need

to think that the presence–absence matrix has any meaningful

ecological property (in and of itself). This argument also cov-

ers multispecies associations – finding non-random clusters or

modules of species within a matrix probably indicates that

some ecological process is at work producing the association

although it does not mean that the entire matrix itself has any

emergent properties. Matrix-level metrics simply summarize

the co-occurrence patterns (or lack thereof) that exist among

the species; the metrics themselves are not measuring any kind

of co-occurrence pattern that exists only at the matrix level.

One way to see this is to consider that the value of a matrix-

level metric typically will not change much when a given spe-

cies or site is removed. If some emergent property of the

matrix was being measured, then even a very slight or small

change in the matrix should lead to a dramatic change in the

metric – in which case, a presence–absence matrix truly would

be more than the ‘sum of its parts’. Although the study of co-

occurrence and community assembly is historically rooted in

the analysis of presence–absence matrices, there is no compel-

ling reason to keep searching for nonrandom structure at the

level of an entire matrix.

CONCLUSIONS

Using a pairwise approach, species interactions can be classi-

fied as positive, negative or random (neutral). Although, as

with any statistical test, some species pairs might not be clas-

sifiable simply as a result of the test having low power (Sfen-

thourakis et al., 2006; Veech, 2013). Together these

interactions represent all the possible ways that two species

could associate in nature, and presumably each type of asso-

ciation represents the outcome of real ecological and evolu-

tionary processes. Matrix-level metrics do not allow for

classifying pairs as positive, negative or random associations.

Certainly, in any species assemblage or set of communities,

there may be meaningful associations (i.e. modules and com-

partments) that simultaneously involve multiple species.

Nonetheless, this does not detract from using a pairwise

approach. Indeed, a recent study using network analysis

showed that many species are only weakly linked to most

other species in a network (Ara�ujo et al., 2011). This sug-

gests that multispecies interactions (e.g. diffuse competition)

may not be relevant (see also Pitta et al., 2012).

The main conceptual limitation on the analysis of co-

occurrence patterns is that we cannot directly infer the exact

process(es) responsible for any particular pattern (Schluter,

1984). This is probably a more severe limitation when analy-

ses are matrix-based than when they are based on species

pairs. The pairwise approach is very amenable to hypothesis-

testing in that predictions about co-occurrence can be made

a priori for paired species based on their traits and/or the

properties of the sampling sites.
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